Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

William G Kaelin, Sir Peter Ratcliffe and Gregg L Semenza share 9m Swedish kronor prize for work on how cells adapt to oxygen availability.

Three scientists have shared this year’s Nobel prize in physiology or medicine for discovering how cells respond to varying oxygen levels in the body, one of the most essential adaptive processes for life.

Congratulations are in order to Sir Peter Ratcliffe FRS, Professor of Medicine at the University of Oxford and Director of Clinical Research at the Francis Crick Institute, who shares this prestigious award with William Kaelin Jr at Harvard University and Gregg Semenza at Johns Hopkins University. They have won for “how cells sense and adapt to oxygen availability,” according to the Nobel committee.

More information can be read in The Guardian article Nobel prize in medicine awarded to hypoxia researchers.

 

Professor Ratcliffe is due to deliver the Department's inaugural John Scott Haldane Lecture on Thursday 21 November 2019, with a talk entitled A hundred years on: 21st Century Insights into Human Oxygen Homeostasis. 

From 1907 to 1913, Haldane was Reader in Physiology at Oxford. In 1911, along with C. G Douglas, with whom he worked in the Oxford Laboratory of Physiology, led an expedition to Pike’s Peak, Colorado, to examine the effects of low atmospheric pressure on respiration. They stayed at the summit house of Pike’s Peak (14,110 feet above sea level), in which they built a laboratory and investigated the process of acclimatisation of breathing to high altitude oxygen levels. Their discoveries revolutionised current ideas about respiration.

Professor Ratcliffe has led the hypoxia biology laboratory at Oxford for more than 20 years. The laboratory discovered the widespread operation of a system of direct oxygen sensing that is conserved throughout the animal kingdom and operates through a novel form of cell signalling involving post-translational hydroxylation of specific amino acids. Catalysis of these hydroxylations requires molecular oxygen and this generates the oxygen-sensitive signal.

More information on Sir Peter Ratcliffe and the Haldane Lecture can be found here.

 

Similar stories

From Cells to Systems: New animation brings physiology to life for students

Head of Department and President of The Physiological Society Professor David Paterson has been involved in developing a new animation about physiology fundamentals which launches today during Biology Week 2021.

Head of Department and President of The Physiological Society congratulates 2021 Nobel Prize Winners

The Nobel Assembly at Karolinska Institutet has today decided to award the 2021 Nobel Prize in Physiology or Medicine jointly to David Julius and Ardem Patapoutian for their discoveries of receptors for temperature and touch.

Celebrated Haldane painting adorns Sherrington walls

A portrait of British Physiologist John Scott Haldane, known as the father of oxygen therapy, by Philip de László is on display on the first floor of the Sherrington building.

Large Lecture Theatre renamed to honour Sir Colin Blakemore FRS

The Large Lecture Theatre is being renamed the Blakemore Lecture Theatre in tribute to the longest serving Waynflete Professor of Physiology Sir Colin Blakemore FRS following a prestigious Festschrift event held in Professor Blakemore's honour.

Small Lecture Theatre renamed to honour DPAG pioneer Florence Buchanan

The newly renamed Florence Buchanan Lecture Theatre is testament to Dr Buchanan’s pioneering career in physiology, in line with the Department's ongoing commitment to acknowledge the significant contribution of women to DPAG and its predecessor departments.