Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

William G Kaelin, Sir Peter Ratcliffe and Gregg L Semenza share 9m Swedish kronor prize for work on how cells adapt to oxygen availability.

Three scientists have shared this year’s Nobel prize in physiology or medicine for discovering how cells respond to varying oxygen levels in the body, one of the most essential adaptive processes for life.

Congratulations are in order to Sir Peter Ratcliffe FRS, Professor of Medicine at the University of Oxford and Director of Clinical Research at the Francis Crick Institute, who shares this prestigious award with William Kaelin Jr at Harvard University and Gregg Semenza at Johns Hopkins University. They have won for “how cells sense and adapt to oxygen availability,” according to the Nobel committee.

More information can be read in The Guardian article Nobel prize in medicine awarded to hypoxia researchers.

 

Professor Ratcliffe is due to deliver the Department's inaugural John Scott Haldane Lecture on Thursday 21 November 2019, with a talk entitled A hundred years on: 21st Century Insights into Human Oxygen Homeostasis. 

From 1907 to 1913, Haldane was Reader in Physiology at Oxford. In 1911, along with C. G Douglas, with whom he worked in the Oxford Laboratory of Physiology, led an expedition to Pike’s Peak, Colorado, to examine the effects of low atmospheric pressure on respiration. They stayed at the summit house of Pike’s Peak (14,110 feet above sea level), in which they built a laboratory and investigated the process of acclimatisation of breathing to high altitude oxygen levels. Their discoveries revolutionised current ideas about respiration.

Professor Ratcliffe has led the hypoxia biology laboratory at Oxford for more than 20 years. The laboratory discovered the widespread operation of a system of direct oxygen sensing that is conserved throughout the animal kingdom and operates through a novel form of cell signalling involving post-translational hydroxylation of specific amino acids. Catalysis of these hydroxylations requires molecular oxygen and this generates the oxygen-sensitive signal.

More information on Sir Peter Ratcliffe and the Haldane Lecture can be found here.

 

Similar stories

Professor Dame Sue Black to deliver 2022 Christmas Lectures

In the 2022 Christmas Lectures from the Royal Institution, DPAG's Visiting Professor of Forensic Anatomy Dame Sue Black will share secrets of forensic science.

Professor Dame Sue Black joins DPAG as Visiting Professor of Forensic Anatomy

The Department welcomes Professor Dame Sue Black DBE OBE FRSE FBA FRAI FRSB ChFA, Baroness Black of Strome and one of the world’s leading forensic scientists, as our Visiting Professor of Forensic Anatomy.

DPAG has two new Professors

Congratulations are in order to Ana Domingos and Nicola Smart who have been awarded the title of Professor in the recent Recognition of Distinction round.

IDRM officially opens in Oxford

A celebration for the opening of the Institute of Developmental & Regenerative Medicine (IDRM) led by Paul Riley took place on Tuesday 12 July 2022, attended by many DPAG members who have recently relocated to this fantastic new Institute.

Annual Report 2021 - 2022

The Department's Annual Report for the academic year 2021-22 has been released. The brochure showcases a selection of the year's highlights, including another top world ranking for Anatomy and Physiology and a strong contribution to the University of Oxford's success to Unit of Assessment 5 in the National Research Excellence framework (2021).