Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

William G Kaelin, Sir Peter Ratcliffe and Gregg L Semenza share 9m Swedish kronor prize for work on how cells adapt to oxygen availability.

Three scientists have shared this year’s Nobel prize in physiology or medicine for discovering how cells respond to varying oxygen levels in the body, one of the most essential adaptive processes for life.

Congratulations are in order to Sir Peter Ratcliffe FRS, Professor of Medicine at the University of Oxford and Director of Clinical Research at the Francis Crick Institute, who shares this prestigious award with William Kaelin Jr at Harvard University and Gregg Semenza at Johns Hopkins University. They have won for “how cells sense and adapt to oxygen availability,” according to the Nobel committee.

More information can be read in The Guardian article Nobel prize in medicine awarded to hypoxia researchers.

 

Professor Ratcliffe is due to deliver the Department's inaugural John Scott Haldane Lecture on Thursday 21 November 2019, with a talk entitled A hundred years on: 21st Century Insights into Human Oxygen Homeostasis. 

From 1907 to 1913, Haldane was Reader in Physiology at Oxford. In 1911, along with C. G Douglas, with whom he worked in the Oxford Laboratory of Physiology, led an expedition to Pike’s Peak, Colorado, to examine the effects of low atmospheric pressure on respiration. They stayed at the summit house of Pike’s Peak (14,110 feet above sea level), in which they built a laboratory and investigated the process of acclimatisation of breathing to high altitude oxygen levels. Their discoveries revolutionised current ideas about respiration.

Professor Ratcliffe has led the hypoxia biology laboratory at Oxford for more than 20 years. The laboratory discovered the widespread operation of a system of direct oxygen sensing that is conserved throughout the animal kingdom and operates through a novel form of cell signalling involving post-translational hydroxylation of specific amino acids. Catalysis of these hydroxylations requires molecular oxygen and this generates the oxygen-sensitive signal.

More information on Sir Peter Ratcliffe and the Haldane Lecture can be found here.

 

Similar stories

Thomas Willis (1621 - 1675) 400th Birthday - Alastair Buchan in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Pro-Vice-Chancellor Professor Alastair Buchan to learn more about Thomas Willis's residence and base for scientific discoveries, Beam Hall.

Thomas Willis (1621 - 1675) 400th Birthday - Erica Charters in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Dr Erica Charters for a History of Medicine perspective on Oxford physician and Father of Neurology Thomas Willis.

Thomas Willis 400th anniversary trailer

General Research

On 27 January 2021 we celebrate the 400th anniversary of the birth of the greatest neuroanatomist of all time, Thomas Willis. DPAG's Professor Zoltán Molnár has interviewed 8 experts - watch a video preview of what's to come from Monday onwards! With thanks to St John's College.

New Nanoscience Institute to advance physiology research in Oxford

Head of Department's News

A new institute for nanoscience research is to open in Oxford thanks to a $10 million gift from The Kavli Foundation, the ground floor of which will be home to cutting-edge new research avenues across the six themes of DPAG.

Lukas Krone to represent Oxford at the Global Young Scientists Summit

Awards and Honours EDI News Head of Department's News Students Vyazovskiy Group News

Congratulations are in order for Dr Lukas Krone who is one of just five University of Oxford researchers selected to attend the Global Young Scientists Summit 2021.

Pawel Swietach becomes Professor Pawel Swietach

Awards and Honours Head of Department's News

Congratulations are in order to Pawel Swietach on his conferral of the title of full Professor. Research in the Swietach Lab is driven by an interest in how biological processes are affected by chemical acidity.