Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The brain is the most complicated organ of any animal, formed and sculpted over 500 million years of evolution.  The cerebral cortex is a critical component of this and is the seat of higher cognitive functions such as language, episodic memory and voluntary movement.

Whilst a human’s brain is vastly superior to that of a mouse’s in terms of its complexity (a human cortex accommodates 16 billion neurons as opposed to a mouse’s mere 14 million), it may surprise you to realise that their starting points may not be too different.

This surprising result was discovered by a multidisciplinary team of mathematicians from the University of Oxford (Dr Noemi Picco, Prof. Philip Maini) and Cardiff University (Dr Thomas Woolley), and neurobiologists from the University of Oxford (Prof. Zoltán Molnár) and the Achucarro Basque Center for Neuroscience (Dr Fernando García-Moreno), supported by a grant from the St John’s College Research Centre.

The team developed an experimentally realistic mathematical model of brain development and applied it across multiple species (mouse, monkey, human). From this they were able to extract different brain development strategies that shed light on what separates us from other animals.

Critically, by accounting for differences in cell growth, changes in cell identity and the time at which these occur, the team found that their model, when comparing a monkey to a mouse, predicted that the monkey has more initial cells, leading to the creation of a larger brain. However, the surprise came when the model was extended to humans. Assuming that human and monkey progenitors progress through the cell cycle at similar speed, the model showed that humans could develop a bigger brain even though they can start with fewer initial cells than a monkey and approximately the same amount as a mouse.

The team are currently working on exploiting their results to further understand the multitude of brain creation strategies developed during evolution. Understanding such strategies can help us understand what happens in cases where the development follows alternative strategies, e.g. cases of Zika virus-induced microcephaly, schizophrenia and epilepsy.

Similar stories

Mootaz Salman set to target new treatments for stroke

The Chief Scientist Office of the Government of Scotland has awarded a collaborative grant of £298,966 to Dr Mootaz Salman to seek new therapeutic avenues to treat stroke.

New BBSRC grant to further our insights into how the cortex controls sleep

Professor of Sleep Physiology Vladyslav Vyazovskiy and Professor of Developmental Neuroscience Zoltán Molnár have been awarded a Project Grant from the Biotechnology and Biological Sciences Research Council (BBSRC) for “Brain mechanisms of sleep: top-down or bottom-up?”

Raised intracellular chloride levels underlie the effects of tiredness in cortex

A new study, co-authored by Professor Vladyslav Vyazovskiy, published in Nature Neuroscience, has revealed that intracellular chloride levels within cortical pyramidal neurons reflect sleep–wake history.

Key cause of type 2 diabetes uncovered

Research led by Dr Elizabeth Haythorne and Professor Frances Ashcroft reveals high blood glucose reprograms the metabolism of pancreatic beta-cells in diabetes. They have discovered that glucose metabolites, rather than glucose itself, are key to the progression of type 2 diabetes. Glucose metabolites damage pancreatic beta-cell function, so they are unable to release enough of the hormone insulin. Reducing the rate at which glucose is metabolised, and these glucose metabolites build up, can prevent the effects of hyperglycaemia.

New study shows clinical symptoms for Alzheimer’s can be predicted in preclinical models

Establishing preclinical models of Alzheimer’s that reflect in-life clinical symptoms of each individual is a critically important goal, yet so far it has not been fully realised. A new collaborative study from the University of Oxford has demonstrated that clinical vulnerability to an abnormally abundant protein in Alzheimer’s brain is in fact reflected in individual patient induced pluripotent stem cell-derived cortical neurons.