Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The brain is the most complicated organ of any animal, formed and sculpted over 500 million years of evolution.  The cerebral cortex is a critical component of this and is the seat of higher cognitive functions such as language, episodic memory and voluntary movement.

Whilst a human’s brain is vastly superior to that of a mouse’s in terms of its complexity (a human cortex accommodates 16 billion neurons as opposed to a mouse’s mere 14 million), it may surprise you to realise that their starting points may not be too different.

This surprising result was discovered by a multidisciplinary team of mathematicians from the University of Oxford (Dr Noemi Picco, Prof. Philip Maini) and Cardiff University (Dr Thomas Woolley), and neurobiologists from the University of Oxford (Prof. Zoltán Molnár) and the Achucarro Basque Center for Neuroscience (Dr Fernando García-Moreno), supported by a grant from the St John’s College Research Centre.

The team developed an experimentally realistic mathematical model of brain development and applied it across multiple species (mouse, monkey, human). From this they were able to extract different brain development strategies that shed light on what separates us from other animals.

Critically, by accounting for differences in cell growth, changes in cell identity and the time at which these occur, the team found that their model, when comparing a monkey to a mouse, predicted that the monkey has more initial cells, leading to the creation of a larger brain. However, the surprise came when the model was extended to humans. Assuming that human and monkey progenitors progress through the cell cycle at similar speed, the model showed that humans could develop a bigger brain even though they can start with fewer initial cells than a monkey and approximately the same amount as a mouse.

The team are currently working on exploiting their results to further understand the multitude of brain creation strategies developed during evolution. Understanding such strategies can help us understand what happens in cases where the development follows alternative strategies, e.g. cases of Zika virus-induced microcephaly, schizophrenia and epilepsy.

Similar stories

Oxford-led research maps milestone stage of human development for the first time

Scientists have shed light on an important stage of early embryonic development that has never been fully mapped out in humans before.

Mapping uncharted networks in the progression of Parkinson’s

A major new $9 million project funded by the Aligning Science Across Parkinson’s (ASAP) initiative will map the original circuits vulnerable to Parkinson’s on an unprecedented scale. The project is a collaboration between core investigators Stephanie Cragg, Richard Wade-Martins, and Peter Magill at Oxford, Mark Howe at Boston University and Dinos Meletis at the Karolinska Institutet, as well as collaborators Yulong Li at Peking University and Michael Lin at Stanford University.

Drug could help diabetic hearts recover after a heart attack

New research led by Associate Professor Lisa Heather has found that a drug known as molidustat, currently in clinical trials for another condition, could reduce risk of heart failure after heart attacks.

Blood bank storage can reduce ability of transfusions to treat anaemia

New research from the Swietach Group in collaboration with NHS Blood and Transplant has demonstrated that the process of storing blood in blood banks can negatively impact the function of red blood cells and consequently may reduce the effectiveness of blood transfusions, a treatment commonly used to combat anaemia.

Overlapping second messengers increase dynamic control of physiological responses

New research from the Parekh and Zaccolo groups reveals that a prototypical anchoring protein, known to be responsible for regulating several important physiological processes, also orchestrates the formation of two important universal second messengers.