Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Studying the clonal relationships among the cells in an organ or organism is the ‘holy grail’ of developmental biology.

There are several methods available to label the entire progeny of a given stem or progenitor cell, but all of them have some drawbacks and could suffer from either underestimating or overestimating the actual size of the clones. To minimize such inaccuracies, most existing methods should be used with very few clones in a given specimen, impeding the investigations on generation, integration and relationship of multiple clones.

The groups of García-Moreno, Begbie and Molnár (all from DPAG) have just published a paper in the journal Development reporting CLoNe, a new method for clonal cell labelling in vivo.  This method is based on the combined labelling (electroporation) of progenitor cells with three types of plasmids encoding (a) multiple fluorescent reporters, (b) a Cre driver and (c) a transposase. The method is developed so it allows the reliable tracing to specific progenitor populations, and the approach was tested in the mouse and chick embryonic telencephalon and in the chick limb bud. It is shown to permit long-term tracing through somatic integration of the reporter plasmids into the host cell genome, and to generate an unbiased colour distribution to maximize clone assignment.

CLoNe allows comparative analysis of progenitor cells across species and it is suitable for various tissues, as evidenced in muscular and epithelial tissue, and systems across several vertebrate species.

García-Moreno F, Vasistha NA, Begbie J, Molnár Z.

CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. (2014) Development. 141(7):1589-98. doi: 10.1242/dev.105254.

http://dev.biologists.org/content/141/7/1589.abstract

http://dev.biologists.org/content/141/7.cover-expansion

Supplementary reading

http://thenode.biologists.com/studying-genealogy-in-cell-clones/research/

Similar stories

Thomas Willis (1621 - 1675) 400th Birthday - Alastair Buchan in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Pro-Vice-Chancellor Professor Alastair Buchan to learn more about Thomas Willis's residence and base for scientific discoveries, Beam Hall.

Thomas Willis (1621 - 1675) 400th Birthday - Erica Charters in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Dr Erica Charters for a History of Medicine perspective on Oxford physician and Father of Neurology Thomas Willis.

Thomas Willis 400th anniversary trailer

General Research

On 27 January 2021 we celebrate the 400th anniversary of the birth of the greatest neuroanatomist of all time, Thomas Willis. DPAG's Professor Zoltán Molnár has interviewed 8 experts - watch a video preview of what's to come from Monday onwards! With thanks to St John's College.

Earliest origins of the forming heart identified

Cardiac Theme Postdoctoral Publication Research

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.

Covid-19 lung damage identified in study

Postdoctoral Research

In a new study into the longer-term damage amongst patients recovering from COVID-19, DPAG Research Fellow Dr James Grist of the Tyler Lab has been running a novel scanning technique that shows a dramatic decrease in the ability of the lungs to diffuse gas in to the blood stream after COVID infection. This work may shed light on the problem of breathlessness after COVID infection and help guide us in understanding therapeutic selection and efficacy.

A clue to how a memory-enhancing pill might work

CNCB Publication Research

Hundreds of dietary supplements have been reported to improve cognitive and emotional function in humans, but few have scientific foundation. A new study from the Waddell group provides fresh insight into how dietary Magnesium supplementation can influence memory performance.