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Abstract—The aim of this work is to begin quantifying th
performance of a recently developed activation imaging al
rithm of Huiskamp and Greensite@IEEE Trans. Biomed. Eng
44:433–446#. We present here the modeling and computatio
issues associated with this process. First, we present a pra
construction of the appropriate transfer matrix relating an a
vation sequence to body surface potentials from a gen
boundary value problem point of view. This approach mak
explicit the role of different Green’s functions and elucidat
features~such as the anisotropic versus isotropic distinctio!
not readily apparent from alternative formulations. A new an
lytic solution is then developed to test the numerical implem
tation associated with the transfer matrix formulation presen
here and convergence results for both potentials and no
currents are given. Next, details of the construction of a gen
porcine model using a nontraditional data-fitting procedure
presented. The computational performance of this mode
carefully examined to obtain a mesh of an appropriate res
tion to use in inverse calculations. Finally, as a test of the en
approach, we illustrate the activation inverse procedure by
constructing a known activation sequence from simulated d
For the example presented, which involved two ectopic fo
with large amounts of Gaussian noise~100 mV rms! present in
the torso signals, the reconstructed activation sequence h
similarity index of 0.880 when compared to the input sour
© 2001 Biomedical Engineering Society.
@DOI: 10.1114/1.1408921#

Keywords—Boundary element method, Critical point, Inver
problem of electrocardiography, Analytic solution, Activatio
sequence, Porcine model, ECG mapping, Body surface po
tials.

INTRODUCTION

The goal of noninvasive electrical imaging of th
heart is to quantitatively reconstruct information abo
the electrical activity of the heart from multiple thorac
ECG signals. Quantitative interpretation of these data
terms of the underlying cardiac electrical activity is
inverse problem and various mathematical algorith
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have been developed over the years in an attemp
solve this electrical imaging problem.1,16,20,25Unless the
problem is posed in a particular manner, this inve
problem is not uniquely determined, i.e., there exist m
tiple cardiac electrical generator configurations that c
give rise to the same thoracic ECGs. This nonuniquen
has hampered attempts at solving the inverse probl
Early approaches to the inverse problem overcame
nonuniqueness by modeling the heart as a combina
of a small number of fixed or moving dipoles. It ha
been recognized that posing the problem in terms
reconstructing epicardial potentials from the body surfa
potential recordings is uniquely determined. Howev
the reconstruction of epicardial potentials is ill-pose
This means that in the presence of noise~which always
exists in practice!, a solution to the inverse problem
produces a result that may bear no resemblance to
true electrical generator. The emergence of a gen
theory for such ill-posed problems32 and the introduction
of the ideas behind constraining the mathematical so
tions have resulted in the large number of inverse al
rithms in existence today in the field of electrocardi
imaging. However, since many of the modern inver
ECG algorithms are based on such a general ill-po
inverse approach they fail to account for the underlyi
physiological processes governing the generation of
body surface potentials~namely, an evolving wave o
activation!. Moreover, many of the algorithms constru
the inverse solution by treating each time instance in
pendently, which, in theory at least, is not the optim
way to proceed with such temporally correlated inform
tion as is present in ECG signals.14,15

New Approach

Another approach to the inverse problem is to po
the problem in terms of the underlying activatio
sequence.18 This has significant advantages over the e
cardial potential problem formulation, not least in that
deals directly with the underlying physiological proce
responsible for generating the body surface potenti
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818 PULLAN et al.
However, it introduces additional difficulties in the mo
eling process, such as the need to model the entire h
instead of just modeling the epicardial surface~since
myocardial activation times rather than just epicard
potentials are being related to body surface potentia!.
Also, it appears that activation-based imaging see
most suited for the ventricles and most relevant to
QRS interval only~although in principle it is possible to
extend the approach beyond the QRS interval!. As a
result of this, and partly because of the fact that
appropriate algorithm for such a problem formulati
had previously not been devised, this approach has
found much favor. However, a powerful new algorithm
based on this activation imaging approach has rece
emerged.14,17

Both the epicardial and activation source formulatio
mentioned above have been recognized for 20 to
years, but as yet no clinically acceptable imaging te
niques have resulted. The two major reasons for this

~1! Previously available mathematical methodologies
computation of the sources were not power
enough.

~2! Adequate procedures for verification of the accura
of the images were not employed.

For each of the two source formulations there are n
powerful imaging algorithms that have not previous
been available.14,15,17 There are also sufficient modelin
techniques now available that, when combined with th
new algorithms, should make it possible to produce m
cardial electrical source images of sufficient stability a
accuracy to be a useful adjunct in the clinical assessm
of the heart. However, these new algorithms need to
quantitatively validated before their clinical worth can
properly assessed.

In order to quantitatively validate the performance
the inverse procedures, one needs to compare any m
ematical results against experimentally obtainedin vivo
data, in particular simultaneously recorded dens
sampled body surface and cardiac potentials. This
rarely been attempted—rather the worth of various
verse procedures has often been judged by examining
performance on simulated data or inin vitro torso tank
experiments. As far as is known until recently,23 only
two sets ofin vivo data have ever been collected, one
a chimpanzee31 ~in which no inverse solution was a
tempted! and one in a dog.1 Neither set is currently
available. Data fromin vitro experiments from perfuse
canine hearts in a homogeneous cylindrical tank h
been collected by Taccardiet al. and are in use by tha
group and others.25–27

We present here the details of the underlying the
behind the electrical imaging process and the porc
model that we are using to validate this new inve
rt

t

:

t

-

e

procedure. Some of this work has been communicate
abstract form.3,21–23,29We demonstrate the accuracy an
convergence properties of the numerical procedure u
to construct the transfer matrix. We also illustrate ho
the procedure is to be applied in practice by produc
an inversely reconstructed cardiac surface activation m
from simulated torso ECGs.

FORMULATION OF THE ACTIVATION INVERSE
APPROACH

The basic activation inverse algorithm is presented
Huiskamp and Greensite.17 The procedure revolves
around the identification of the critical points and tim
of the surface activation function~i.e., epi- and endocar
dial breakthrough/termination points and times!, via the
use of a modified multiple signal classification algorithm
The use of this method on a given individual or anim
requires the construction of an appropriate transfer fu
tion that maps the activation sequence to body surf
potentials.

The proof of the activation imaging algorithm14 uses
source-field relationships,34 which employ a Green’s
function that accounts for the anisotropy of the myoc
dium. While the new imaging algorithm proved from
these relationships is completely general, the initial u
of it has been restricted to using the so-called doub
layer transfer matrices, which assume a homogene
and isotropic myocardium. The traditional constructi
of such a double-layer transfer matrix begins with t
assumption of myocardial homogeneity and isotropy a
the use of equations defining the potential due to a dip
in free space.8 We prefer to investigate the transfer m
trix construction from a boundary value problem pe
spective~i.e., from solving the bidomain equations! that
avoids explicit reference to dipoles. It also makes mo
explicit the anisotropic/isotropic distinction and eluc
dates features not apparent from a dipole formulati
This approach also generalizes some previously p
sented identities.34 The full details of the construction o
the transfer matrix from the bidomain equations is giv
in Appendix A.

The numerical discretization of the bidomain equ
tions ~inside the heart! and Poisson’s equation~for pas-
sive tissue regions! results in an equation of the form
@Eq. ~45! of Appendix A#

S coefficients
of potentialsD S fm

fe
H

f1

•

•

fN

D 5S coefficients
of currentsD S qe

H

q1

•

•

qN

D , ~1!



t,

en-

ial

e-
ten
ls
-
e

-

er
.

Eq.
Eq

ven
ens

in
in

nd
ing
er
h-
on
ifi-

full
f
es

has

om
ion
ur-
-

his
rd-

n
-

c-

al
o

ial

r-

int
p

r or

r-
al
m-
the

mp

ire

819Noninvasive Electrical Imaging of the Heart
where
N is the number of tissue regions outside the hear
fi is a vector of nodal values of potentialf in region i,
fm is a vector of nodal values of transmembrane pot

tial fm on the heart,
fe

H is a vector of nodal values of extracellular potent
fe on the heart,

qi is a vector of nodal values of currentq on the sur-
face of regioni, and

qe
H is a vector of nodal values of currentqe on the heart

surface.

Equation~1! can be considered to be an implicit r
lationship between the vector of transmembrane po
tials in the heart,fm , and the vector of torso potentia
on the body surface,fB . To construct an explicit trans
fer matrix TBH , use is made of the definition of th
transfer matrix, i.e.,

fB5TBHfm . ~2!

Using this relationship, one simply needs to setfm to
be the vectorek ~i.e., a unit vector that is zero every
where except at thekth position! and solve Eq.~1!. The
resulting solution forfB will correspond to thekth col-
umn of TBH . Alternatively one can construct a transf
matrix from fm to fe

H by suitable rearrangement of Eq
~1!.

No mention has yet been made of the nature of
~1!. The physical problem being solved suggests that
~1! will be singular if fm is the only variable to be
specified, since no potential reference has been gi
The system can either be solved in a least-squares s
or a technique such as deflation can be used.

The construction of the transfer matrix described
Appendix A has assumed homogeneity and isotropy
the heart muscle from Eq.~35! onwards. It is worth
pointing out that the assumptions of homogeneity a
isotropy are not required to use the activation imag
algorithm.17 It is also possible to construct a transf
matrix relating activation times to torso potentials wit
out these assumptions. However, the transfer matrix c
struction under anisotropic conditions becomes sign
cantly more difficult. The bidomain equations@or a weak
form of them, such as that given in Eq.~29! of Appendix
A# have to be solved throughout the heart~using some
volume-discretization procedure representing the
myocardial-fiber orientation! and coupled to solutions o
Eq. ~44! outside the heart. This dramatically increas
the problem size. Work on this is progressing,6 but at this
stage homogeneity and isotropy are assumed.
-

.

.
e

-

Inverse Approximation to the Myocardial Activation
Sequence

The activation inverse procedure that is used here
previously been described in detail.17 Here, we include a
summary of that method for completeness.

The basic idea behind the new approach stems fr
the observation that when an evolving cardiac activat
wave front intersects the endocardial or epicardial s
face ahole develops in the wave front. This is a signifi
cant change to the topology of the wave front and t
change is reflected in the torso surface potential reco
ings. If t(x) is defined to be the activation time o
surface of the heart,GH , at locationx, then these break
through points are critical points oft(x), if the wave
front breaks through at locationx8, then¹t(x8)50 and
t(x8) is the time at which this breakthrough event o
curs.

Following some considerable mathematic
manipulation,13 this critical point observation leads t
two important results:

~1! x8 is a critical point of t(x) with critical time
t(x8)⇔tBH is in the space spanned by the spat
eigenvectors offB , wheretBH is the column of the
transfer matrix fromfm to fB corresponding to the
point x8.

~2! With all critical points oft(x) determined, the com-
putation oft(x) ~on both the epicardial and endoca
dial surfaces! is a well-posed problem.

The key assumption required to prove the first po
above is thatfm(x,t) is modeled as a uniform step jum
across the wave front, i.e.,

fm
i ~ t,t!5a1bH@ t2t~xi !#, ~3!

wherea represents the resting potential,b the height of
the transmembrane potential jump,H(•) is the Heaviside
step function,i is the index corresponding to the pointxi

on the heart surface, andt5$t i%5t(xi). @It should be
noted that the notation in Eq.~3!, and throughout this
paper, is such that superscript indices indicated vecto
matrix indices and subscripts indicate labels.#

This assumption is not a practical restriction for no
mal hearts. However, it does imply that the maxim
temporal resolution is that of the duration of a transme
brane upstroke and the maximal spatial resolution is
width of the wave front~since below this resolution the
activation wave front cannot be considered a step ju
in space and time!.

To compute the critical points and times, we requ
both the signal matrixF@1,S#

is ~of size M3S, whereM is
the number of torso electrodes,S is the number of time
samples,s is the sample number index, andj is the index
corresponding to the pointyj on the torso surface! re-
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820 PULLAN et al.
corded from torso surface electrodes and the tran
matrix from fm to fB , TBH . To determine the spatia
~U! and temporal~V! eigenvector matrices ofF@1,s# , the
singular value decomposition is used, i.e.,

F@1,s#5U@1,s#(@1,s#V@1,s#
T , ~4!

wheresP@1,S#.
The eigenvectors corresponding tosmall singular val-

ues are discarded, so the effective rank ofU is R
(,M ). These discarded eigenvectors are assumed
represent only noise space.

In order to locate the critical points one needs to fi
the columns ofTBH that are contained in the spac
spanned by the spatial eigenvectors. A vector of recip
cal distances from signal space can be constructed b

M @1,s#
i 5S 12(

r 51

R

@ t̂BH
i

•u@1,s#
r #2D 21

, ~5!

whereu@1,s#
r is the r th column of the spatial eigenvecto

matrix U@1,s# and t̂BH
i is the Euclidean normalizedi th

column of the transfer matrixTBH .
This distance measure greatly exaggerates poinx

which are close to signal space and is singular for po
contained in this space. In practice,M @1,S#

i has no singu-
larities since noise and errors associated withF@1,S# and
TBH ensure that no column ofTBH is contained exactly
in signal space.

To find the activation times corresponding to the
critical points, the following matrices are constructed:

M 1
is5M @1,s#

i , ~6!

M 2
is5M @s,S#

i , ~7!

where 1,s,S. These two matrices examine the di
tance of each point from signal space, where the sig
space is restricted to@1,s# and @s,S#, respectively. For
times ~s! close to the activation time associated w
each critical pointx, these matrices should undergo sha
changes, sincex will begin to enter~leave! the signal
space associated with the signal in time inter
@1,s#(@s,S#) as the signal space is enlarged~reduced!.

The zero-crossing matrix, defined by

Zis5M 1
is2M 2

is , ~8!

is theoretically zero at critical points oft(xi) and has a
steep gradient about these zeroes. In practice, the row
Zis contain numbers that increase from negative to po
r

l

f

tive values and the time corresponding to the colu
index s of the number nearest zero provides an init
estimate oft(xi).

Activation Sequence Optimization

With all critical points and times identified, the nex
step is to determinet(x) on the heart surfaces. Thi
theoretically well-posed process is formulated as an
timization problem, where the objective is to minimiz
the difference between calculated torso potentials and
measured potentials. Additional constraints on the o
mization process can be imposed, e.g., addition of
surface Laplacian of thet(x) to the minimization.18 The
use offm

i in Eq. ~3! gives rise to a residual that is no
continuous witht. From an optimization point of view, it
is more desirable to be dealing with functions which a
continuous. Moreover, the speed of convergence
greatly aided by continuous derivatives. Thus, one ty
cally modifies Eq.~3! so thatfm

i has a sharp but con
tinuous upstroke duration as in, e.g., a generalized fo
of the activation function18

fm
i ~ t,u,t!

55
u1 t2t i<

2u3

2

u11
u2

2 S 2~ t2t i !

u3 11D 2 2u3

2
,t2t i<0

u11u22
u2

2 S 2~ t2t i !

u3 21D 2

0,t2t i,
u3

2

u11u2 t2t i>
u3

2
,

~9!

whereu1 is the resting potential,u2 is magnitude of the
transmembrane potential jump,u3 is the duration of the
action potential upstroke, andu5$uk% is the vector of
parameters defining the activation wave function.

The final objective function, which is minimized b
adjusting activation times, is

minF~t,u!5fT~t,u!f~t,u!1lL@t~x!#, ~10!

whereL is the Laplacian of the activation field andl is
a parameter that controls the degree of regulariza
imposed on the objective function.

There are a number of choices for the residual vec
f(t,u) in the optimization problem. A common choice
to set the residual to be

f j~t,u!5ifB
i 2f̂B

j ~t,u!i2 , ~11!
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821Noninvasive Electrical Imaging of the Heart
where fB
j is the j th row of the matrix of known body

surface potentialsFB5F@1,S# andf̂B
j (t,u) is the j th row

of the matrix of calculated body surface potentia
F̂B(t,u), given by

F̂B
is~t,u!5TBH

ji fm
i ~ ts,t,u!, ~12!

wheresP@1,S# and ts is the actual time at which thesth
sample was recorded.

The critical points can be constrained in several d
ferent ways, e.g., the critical points and times could
fixed, or the critical points could be constrained to r
main local maxima or minima oft(x). However, impos-
ing such constraints is of questionable practical value
this stage. The reason for this is that it is not alwa
clear which points, in the presence of geometric no
are true critical points and hence the choice of wh
points to constrain can be subjective. Thus, optimizati
are typically performed with no constraints on the critic
points. It is also possible to optimize on the upstro
durationu3 as well as the voltagesu1 and u2, although
these are typically fixed before optimization begins.

As with almost all inverse methods, the above
quires an appropriate forward transfer matrixTBH that
has been carefully validated. This is the focus of t
following section.

FIGURE 1. Schematic of analytic problem setup, with inner
sphere of radius R1 and outer sphere of radius R2 . Conduc-
tivity parameters of s i and se in the inner sphere and s in
the outer sphere were specified. The transmembrane poten-
tial fm on the inner surface is specified by Eq. „47… and a
no-flux boundary condition is specified on the outer surface.
The extracellular potential, fe

in , on the inner surface and fe
out

on the outer surface and the normal derivatives were com-
puted.
FORWARD MODEL VALIDATION

To verify the accuracy of the numerical solution pr
cess used to construct and solve Eq.~45! in Appendix A,
we present here results for a simplified case for which
analytic solution can be constructed.

Test Problem

Two concentric spheres~as shown in Fig. 1! were
constructed, with the inner and outer spheres repres
ing the epicardial and torso surfaces, respectively.
spherical-polar coordinate system~r, u, z!, with 0<u
,2p for the circumferential coordinate and 0<z<p for
the azimuthal coordinate, was used to geometrically
scribe and analytically solve the problem, although n
merical solutions were carried out in a rectangular C
tesian framework.

The extracellular potential was denoted byfe
in and

fe
out for the inner and outer spheres, respectively.
The governing equations and boundary conditions

this problem closely mimic that of the true problem. W
ultimately wish to deal with the problem that is govern
by Eqs.~24! and ~44! in Appendix A and subject to the
boundary conditions@Eqs. ~13!–~17!#.

A reference potentialf ref was set at the top of the
outer sphere (R2 ,u,0) as specified by Eq.~17!:

]fm

]t
50 at r 5R1 , ~13!

fe
out5fe

in at r 5R1 , ~14!

~s i1se!
]fe

in

]r
5s

]fe
out

]r
at r 5R1 , ~15!

]fe
out

]r
50 at r 5R2 , ~16!

fe
out5f ref at r 5R2 ,z50. ~17!

We chosefm to be the potential that would be set u
by a dipoler inside a sphere of radiusR1 . This choice
satisfies Eq.~13! and ensures a nontrivial solution can b
obtained. With the use of associated Legendre polyno
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als, analytic expressions for the extracellular potent
on both surfaces can be calculated. The derivation of
general solution to the above is given in Appendix B

A particular solution for this general case is also giv
in Appendix B. WithR151 andR253, the dipole speci-
nts
as

ical
e
the

s

ns
ate
ur-
fied by r5(1,2,1), the bidomain conductivities given b
s i52 and se54, the passive conductivity set tos52,
and four of the coefficients of the general solution tak
as C1151, D1151, D1151, and C151, the particular
solution in this case is
fe55
S 52

17
cosu1

104

17
sinu D S r 1

1

r 2D sinz1S r 1
87

122r 2D cosz2
27

122

2
~2r 311!

3r 2 ~cosu sinz12 sinu sinz1cosz! 0,r<1

S 81

17
cosu1

162

17
sinu D S 2r

27
1

1

r 2D sinz1S 3r

61
1

81

122r 2D cosz2
27

122
1,r<3,

~18!

and the radial derivatives given by

]fe

]r
55

S 52

17
cosu1

104

17
sinu D S 12

2

r 3D sinz1S 12
174

122r 3D cosz

2
2~r 321!

3r 3 ~cosu sinz12 sinu sinz1cosz! 0,r<1

S 81

17
cosu1

162

17
sinu D S 2

27
2

2

r 3D sinz1S 3

61
2

162

122r 3D cosz 1,r<3.

~19!
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The numerical solutions for varying mesh refineme
were compared to analytically generated solutions
specified by Eqs.~18! and~19!. Equation~20! provides a
direct comparison between the analytic and numer
solutions while Eq.~21! provides a relative percentag
comparison between the two solutions. If we denote
goal potential~or current! field at nodei as f i and the
computed potential~or current! field at the same point a
f̂ i , the root-mean-square~rms! error is given by

rms5
A (

i 51

N

~f i2f̂ i !2

N
, ~20!

and the normalized integral difference squared~NIDS! is
given by

NIDS ~%!5A*G„f~x!2f̂~x!…2dG~x!

*Gf~x!2dG~x!
3100%.

~21!

The problem was solved using bilinear basis functio
with the mesh systematically refined in each coordin
direction. The convergence plots for potentials and c
rents on both surfaces are shown in Figs. 2 and 3,
spectively. The error measures are plotted against
average characteristic element size~square root of the
average of the areas of each element!, h, and the solution
degrees of freedom~DOF!. The slopes of the NIDS lines
in Figs. 2 and 3 are 2.7 and 2.5, respectively, and t
the problem has a linear convergence rate of at le
O(h2).

Figure 4 shows the potential and the current values
five evenly spaced points, determined by settingu50
and varyingz from 0 to p. Effectively, this is a slice
from the top to the bottom of the sphere from the lowe
resolution mesh, which allowed the solution fields
different refinement levels to be compared. The plot
the left shows the potential on the outer surfacer
5R2) and the plot on the right the current at the inn
surface (r 5R1). Note that the reference potential is s
to 0 mV at z50 on the outer surface and the no-flu
boundary condition ensures that the current is alw
zero atr 5R2 .

Reassuringly, as the mesh was refined, the solu
approached the analytic solution and the numeri
implementation of the transfer matrix was validated. Th
allowed us to confidently proceed towards the constr
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823Noninvasive Electrical Imaging of the Heart
tion and validation of a porcine model to be used
investigate the new inverse algorithm.

PORCINE MODEL DEVELOPMENT

The geometric organization of the torso and its co
stituents are of central importance to the ECG inve
algorithms described in the section on formulation of t
activation inverse approach. This is primarily due to t
calculation of the transfer matrix, which relates he
transmembrane potentials to torso potentials. Our u
mate aim is to validate ECG inverse algorithms usingin
vivo data obtained from pigs. To achieve this, a comp
tational model of a pig is required. To construct o
generic pig model, we obtained a sequence of cro
sectional CT torso images from a young 20 kg pig th
was artificially ventilated. Each CT image was acquir
with the lungs fully inflated.

Images were digitized to provide a three-dimensio
data set of the endocardial, epicardial, lung, fat, and s
surfaces. These data were then used with a previo
developed nonlinear optimization procedure that incor
rates nonlinear constraints and smoothing4 to obtain a
parametric representation~based onC1 cubic Hermite

FIGURE 2. Convergence analysis for the extracellular poten-
tial on the surface of both spheres for the analytic test prob-
lem. Shown are the two error measures defined in Eqs. „20…
and „21… as functions of mesh refinement „h… and solution
matrix size „solution degrees of freedom ….
-

elements! of the above surfaces. Such a representat
allows for the construction of an efficient, anatomica
accurate computational model of the pig.

A summary of the results achieved from this fittin
procedure using the porcine data is given in Table 1. T
fitted porcine model is shown in Fig. 5. Due to th
leanness of the young pig, the fat layer was not explic
modeled. This generic model is referred to later as
model with level 0 refinement~see Table 3! and provides
a framework on which to validate certain aspects of
whole procedure~e.g., the appropriate mesh resolution
use in the computational forward model!. Customization
of this generic pig model for a given pig experiment h
been previously described.7,22,23

ANALYSIS OF MODEL CONVERGENCE USING
FORWARD CALCULATIONS

The model discretization process introduces numer
approximation errors into the solution procedure. By
fining the mesh, and thereby increasing the number
solution degrees of freedom, the error associated with
discretization process generally decreases. Once

FIGURE 3. Convergence analysis for the normal current flow
through the inner sphere surface for the analytic test prob-
lem. Shown are the two error measures defined in Eqs. „20…
and „21… as functions of mesh refinement „h… and solution
matrix size „solution degrees of freedom ….
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mesh has been refined to a point where the chang
solution is less than an acceptable tolerance, the solu
is said to have converged.

In order to use the inverse ECG algorithm to con
dently quantify electrocardiac activity, the effects on t
results of computational mesh resolution must be inv
tigateda priori. This section presents an analysis of t
solution convergence based on forward ECG calcu
tions, for which torso potentials were computed using
prespecified electrocardiac source together with the tra
fer matrix for the computational model.

FIGURE 4. Comparison between the analytic and the numeri-
cal extracellular potentials at rÄR2 and the currents at r
ÄR1 for the analytic test problem.

TABLE 1. Summary of the results obtained by fitting
piecewise bicubic Hermite surfaces to digitized CT slices of a
particular pig. The rms errors compare digitized data points to

their orthogonal projections onto the fitted surfaces.

Surface
Number of
data points

rms error
(mm)

Epicardial 1603 1.23
Left ventricle 500 1.47

Right ventricle 892 1.13
Left lung 2011 2.14

Right lung 2640 2.71
Outer torso 2417 2.47

Average rms 1.86
-

Electrocardiac Sources

To solve the forward problem of electrocardiology,
cardiac source that specifies the electrical distribution
the myocardium is required. This source may either
recorded by invasive means, approximated using elec
cal models of the myocardium, or approximated usi
recordings from sources thought to represent the epi
dial potential distribution from a heart inside a torso. F
our convergence analysis, two different cardiac sour
were used.

The first was a simple dipole source with a fixe
center and varying magnitude and direction. The dir
tion was specified for 300 times steps at time intervals
2 ms.2 The use of such a source allows one to investig
the mesh resolution necessary for a converged epica
potential to body surface potential forward problem—
necessary prerequisite before attempting a traditional
cardial potential inverse procedure. While such an
verse is not the aim of the present work, it is assum
that this analysis will provide valuable insight into th
mesh resolution required for accurate activation inve
reconstructions.

The second source was a surface activation pro
This was derived from an activation map obtained us
an eikonal model of cardiac activation33 and solved on a
finite-element model of the canine heart.19,24 The result-
ing activation profile produced by the eikonal model
the canine heart was then transformed to the geometr

FIGURE 5. Anatomically accurate model of the porcine torso,
showing the outer skin layer, lungs, and heart from an ante-
rior perspective. Dark lines show the smoothly continuous
elements of the lowest resolution computational mesh.
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FIGURE 6. Epicardial surfaces „top row … and ventricular chambers „bottom row …, with activation profiles displayed as a color
field, shown from anterior and posterior views. The activation profile of the canine ventricles „left two columns … was fitted to the
epicardial and endocardial surfaces of the porcine model „right two columns …, which resulted in an activation range of 0–52 ms
compared with 0–55 ms for the canine heart. The canine activation was generated from an eikonal model „see Ref. 33 … with
experimentally determined endocardial activation times used as boundary conditions. The porcine activation sequence was one
of the heart sources used in the convergence analysis.
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the porcine heart model by projecting nodal values
thogonally onto the surface of the porcine heart a
fitting the field using least squares. This resulted
slightly different activation times on the two geomet
cally different meshes. The original canine activati
profile and the fitted porcine profile are illustrated in F
6. The activation field of the canine model has a ran
of 0–55 ms, while the porcine model has a range
0–52 ms.

Material Properties

The material conductivities used for this study we
derived from a number of papers10,11,30and were chosen
to be consistent with those of other torso models in
literature.5,9 A summary of the conductivity values use
for the forward analysis is given in Table 2. Since ac
vation sequences have been shown to be virtually in
pendent of the surrounding torso conductivity,12 the exact
values of the conductivities are thought to be of minim

TABLE 2. Material conductivities used for the porcine model.
Values were sourced from experimental papers „see Refs. 10,

11, and 30 … and other torso models „see Refs. 5 and 9 ….

Tissue
Resistivity

(q cm)
Conductivity
(mS mm21)

Ratio to
torso cavity

Blood 159 0.63 2.86
Intracellular 333 0.30 1.36
Extracellular 333 0.30 1.36

Lungs 2000 0.05 0.23
Torso 255 0.22 1.00
-

importance to our proposed inverse studies. This is
contrast to the epicardial potentials approach, which
change dramatically with surrounding tissu
impedance.12 No attempt has been made to measure
conductivities of various organs during the porcine e
periments and we have chosen to use the values in T
2 in our inverse analysis.

Comparison Methodology

To compare the effect of model refinement, a numb
of metrics were used to quantify the differences betwe
a particular result from two different simulations. Give
the temporal and spatial nature of each solution set,
data were reduced by comparing the potential distri
tion over a subset of nodes at a fixed time. In addition
Eqs. ~22! and ~23!, the maximum and minimum poten
tials were also compared.

Table 3 shows mesh statistics at the generic and
converged refinement level for each surface of
model. The initial level of refinement~level 0! refers to
the mesh resolution achieved from the geometric fittin
Each level of refinement involved refining the surfac
once in each of the two parametric~j! directions. The
epicardium was refined an additional time in the circu
ferential (j1) direction to achieve a refinement level o
2.5. Two measures were used to characterize the leve
refinement of each surface. These were the numbe
degrees of freedom~which is directly related to the orde
of the basis function and the number of nodes! and a
characteristic element size~denotedh!. The characteristic
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TABLE 3. Mesh statistics for each surface of the generic porcine model. Each surface has the
refinement level required for a geometrically accurate mesh „level 0 … and the refinement level
required for a computationally converged solution. Refinement level 0 refers to the surfaces
created from geometric fitting. Each additional level of refinement involves refining the surface

uniformly in each of the parametric „j… directions.

Surface
Refinement

level Nodes Elements

Geometric
DOF

per coordinate

Characteristic
element size

h (mm)

0 37 40 142 21.3
Epicardium 1 152 160 602 10.6

2 622 640 2658 5.3

Left lung 0 74 80 290 17.9

1 306 320 1218 8.9

Right lung 0 74 80 290 20.4

1 306 320 1218 10.2

Left
ventricle

0 27 30 102 13.0

1 112 120 442 7.0

Right
ventricle

0 38 42 146 14.8

1 158 168 626 7.4

Skin 0 254 264 1010 37.3

1 1034 1056 4130 18.6
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element size was defined to be the square root of
average element area.

We use two main metrics to quantify the differen
between a master signal matrix (FB) and a comparison
signal matrix (F̂B). The first metric is the similarity
index ~SI!, or correlation coefficient, which is indepen
dent of the magnitude of the two signals. It quantifies
linear relationship between two variables and is insen
tive to scaling or translation in the magnitudes of t
vectors with respect to one another. The SI thus provi
a measure of the degree to which the spatiotemp
topography of the fields differ between two samples. T
second metric is the relative root-mean-squared e
~relative rms!, which quantifies the difference in th
magnitude between two fields. It is sensitive to a scal
or translation in the magnitudes of one vector with
spect to another.

The similarity index is defined as

similarity index

5

fB
k
•f̂B

k 2
~fB

k
•e!~f̂B

k
•e!

iei2
2

AS fB
k
•fB

k 2
~fB

k
•e!2

iei2
2 D S f̂B

k
•f̂B

k 2
~f̂B

k
•e!2

iei2
2 D

,

~22!
l

and the relative root-mean-squared error is defined a

relative rms5
ifB

k 2f̂B
k i2

ifB
k i2

, ~23!

where, for a similarity index or relative rms at a fixe
sample~or fixed point on the torso!, fB

k is the kth col-
umn ~row! of the FB matrix, f̂B

k is thekth column~row!

of the F̂B matrix, ande is the M31 (13S) vector of
ones.

In addition to the two main error metrics, the magn
tudes of the maxima and minima potential values w
also compared between different solution fields. This
ror metric can be extremely sensitive to changes betw
the fields as they simply compare a single poten
value, while the relative rms and SI compare the fields
a whole. As the fields were compared at the relat
sparse nodal locations of the lowest-resolution mod
changes in the locations of the maxima and minima
tentials were not considered.

Convergence Analysis With The Moving Dipole Sourc

Using the dipole source specified in the section
electrocardiac sources, a range of simulations at differ
refinement levels was performed to quantify the effect
varying the mesh resolution on solution convergence
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TABLE 4. Effect of refining the epicardial surface on the torso surface potentials using a
moving dipole source. All regions, apart from the epicardium, were maintained at the
refinement level set by the reference model „both lungs and torso surface at level 1 refinement ….
The various comparison metrics are listed in the first column. The second column outlines the
different levels of refinement used for each surface, while the remaining columns show the
comparisons at different time instances. Level 2.5 corresponds to refining the level 2 mesh in

just the circumferential direction.

Measure

Epicardial
refinement

level Peak P Peak R Peak T
QRS

integral

0–1 0.032 0.047 0.105 0.041
Rel. rms 1–2 0.001 0.003 0.003 0.002

2–2.5 0.001 0.001 0.003 0.002

0–1 1.000 0.999 0.997 0.999
SI 1–2 1.000 1.000 1.000 1.000

2–2.5 1.000 1.000 1.000 1.000

0–1 10.39 14.33 212.00 8.15
Max. Df% 1–2 20.07 20.09 0.28 20.04

2–2.5 0.22 0.07 0.06 0.06

0–1 0.56 0.90 28.42 20.10
Min. Df% 1–2 0.09 20.02 0.28 0.00

2–2.5 0.04 0.01 0.09 0.02
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To quantify the changes between refined meshes,
potentials at the nodal positions from the least-refin
case~level 0! were used to compute the error measur
There were 37 sites on the epicardium and 254 sites
the torso surface used for the comparisons.

Key events in the cardiac cycle were used as temp
markers for comparisons. They were peak P at 115
peak R at 240 ms, and peak T at 505 ms. The Q
interval was considered to span 190–290 ms. Th
times were determined by solving the forward proble
and examining the resultant signals on the domin
chest leads.

Since the use of the dipole source was to determ
the appropriate mesh resolution for a traditional poten
inverse, no blood masses were included in the forw
simulations involving this source. An isoparametric fo
mulation was used in the forward solutions, i.e., t
dependent variable~potential! was approximated using
the same basis functions as used to approximate
geometry ~cubic Hermite interpolation!. Epicardial po-
tentials were calculated from the dipole source inside
heart as part of the solution process and these poten
changed with heart mesh refinement. Therefore, for
analysis, both epicardial and torso surface potent
were compared.

To test whether a model with a certain refineme
level had converged, a particular region was progr
sively refined until there was no significant change in
solution. To determine the appropriate resolution of
entire mesh, this process was repeated with the o
regions in the mesh at various levels of refinemen
l
,

e

s

r

From this large number of simulations, a referen
model, which had each region at an appropriate reso
tion for a converged forward solution, was chosen. T
reference model contained the epicardium refined
level 2, the left and right lung to level 1, and the torso
level 1 refinement.

To illustrate the process, Table 4 summarizes the
fect that epicardial surface refinement had on the res
ing torso potentials. In this case, a level 1 refinement
the epicardium produced a converged solution. Ot
simulations show that the epicardial potentials the
selves did not converge until the epicardium was refin
to level 2. The average element length for the refin
model was 5.3 mm on the heart. This model resul
from a double refinement for the heart~from 40 to 640
elements! and single refinements for the lungs~from 80
to 320 elements! and torso~from 264 to 1056 elements!.

Convergence Analysis With Activation Sequence Sou

The process described in the previous section w
repeated using the activation profile specified in the s
tion on electrocardiac sources.

Since the activation sequence was derived from
eikonal solution on a ventricular heart model,33 just the
QRS interval of the cardiac cycle was considered.
outlined in the section on electrocardiac sources, the
tivation sequence progressed for a total of 52 ms. K
events of the QRS interval were used as temporal ma
ers for comparisons. They were peak Q at 12 ms, pea
at 31 ms, and peak S at 43 ms. The QRS inter
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TABLE 5. Effect of refining the epicardial surface on the torso potentials using an activation
source. All regions, apart from the epicardial surface, were maintained at the refinement level
for the reference model „left and right ventricular chambers, both lungs, and torso surfaces at

level 1 …. The column layout is the same as Table 4.

Measure

Epicardial
refinement

level Peak P Peak R Peak T
QRS

Integral

0–1 0.071 0.298 0.250 0.057
Rel. rms 1–2 0.014 0.058 0.131 0.036

2–2.5 0.002 0.009 0.032 0.006

0–1 0.997 0.938 0.989 0.998
SI 1–2 1.000 0.998 0.994 1.000

2–2.5 1.000 1.000 1.000 1.000

0–1 214.67 21.88 226.56 212.55
Max. Df% 1–2 21.81 23.10 23.96 20.87

2–2.5 0.12 0.81 1.37 1.35

0–1 3.08 44.42 3.38 21.02
Min. Df% 1–2 0.42 16.98 21.02 21.97

2–2.5 0.05 20.25 2.65 0.39
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spanned 0–52 ms. These times were again determine
solving the forward problem and examining the result
signals on the torso surface.

The use of a prescribed activation sequence me
that refinement of the myocardial surfaces had no ef
on the resulting activation times, since they were sim
interpolated from the unrefined model, as illustrated
Fig. 6. This is in contrast to the moving dipole sourc
for which the epicardial potentials were calculated
part of the solution process.

Following the section on convergence analysis w
the moving dipole source, the changes between refi
meshes were quantified using just the potentials at
nodal positions on the torso surface of the unrefin
model ~254 sites!. Again, convergence was determine
by altering the refinement level of a given region, wh
holding all other regions constant. Table 5 summari
the effect of epicardial surface refinement on compu
torso potentials. To obtain converged solutions using
activation source, one refinement in eachj direction was
needed for each surface.

Summary of Convergence Analysis

In summary, Table 3 details the statistics for ea
level of refinement for each surface. For the activat
heart source, convergence was achieved using a lev
refinement of all surfaces. The moving dipole he
source required a level 2 refinement for the epicard
surface and level 1 refinements for the lungs and ou
torso. Thus, this model was selected for the simulati
in the next section, which illustrate the inverse proc
dure.
y

t

1

ACTIVATION RECONSTRUCTIONS USING THE
PORCINE MODEL

To illustrate the activation inverse approach using
realistic pig geometry, we present here results us
simulated data. A known activation profile was genera
by specifying a number of initial activation sites~shown
as purple spheres in Fig. 7!. Activation times were then
generated for all points on the heart surfaces based
the distance to the nearest activation site~which is
equivalent to solving a simple activation model in
homogeneous heart!.

Given thisgoal activation profile, torso surface poten
tials were generated by solving Eq.~45!. This resulted in
potentials at all points on the torso surface in the ab
lute range of 0–4 mV. Gaussian noise with an absol
magnitude of 100mV rms was added to these tors
surface signals and used as input for the inverse pro
dure. This is somewhat larger than one would typica
encounter in a clinical setting, but is used here to prov
a stern test of the inverse process. At this stage
geometric or correlated noise had been added to
system.

The transfer matrix used to generate this map c
sisted of 1034 rows and 422 columns. The upper a
lower bounds of each activation time was set to 0 a
100 ms, as defined by the activation sequence and
body surface potentials. A sigmoidal activation function18

was used to represent the action potential. The magnit
of the transmembrane jump of Eq.~9! was fixed at 100
mV and the width of the upstroke duration was 5 ms

A series of simulations were performed, with vario
for the regularization parameter~l! in Eq. ~10!. The
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FIGURE 7. Goal and computed activation
fields displayed on the epicardial and en-
docardial surfaces „layout as described in
Fig. 6 …. The goal activation map is shown
on the left two columns and the com-
puted activation map on the right two col-
umns. Dark purple spheres represent the
initial seed points used to generate the
activation sequence.
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computed activation field was found to be fairly inse
sitive to the amount of regularization. Theoretically, wi
the critical points and times accurately defined, the pr
lem becomes well posed. However, in practice, the ze
crossing algorithm is only able to provide an estimati
of the critical point locations and their correspondi
times. With high levels of regularization, smoother ac
vation fields resulted. However, this did not necessa
result in an improved inverse solution. The maxima a
minima tended to be damped out, resulting in a poo
but smoother activation field.

A comparison between the measured and calcula
activation maps is given in Fig. 7. The measured a
reconstructed activation profiles are shown on the
and right pairs of epicardial surfaces, respectively. T
goal activation sequence had a range of 24–74 ms w
a duration of 50 ms. The inversely reconstructed acti
tion sequence ranged from 24 to 75 ms with a durat
of 51 ms. The goal and computed body surface potent
and activation sequences were compared using the
rics defined in Eqs.~22! and ~20!. The goal and com-
puted body surface signals had a rms error of 0.94
and a SI of 0.998. The relative rms error between
goal and computed activation times was 5.6 ms, wh
the SI was 0.880 and the maximum error was 17.8
Thus, the activation inverse approach successfully rec
structed the electrocardic source.

CONCLUSIONS

We have presented the theoretical issues assoc
with quantitatively reconstructing activation sequenc
from densely sampled thoracic ECG signals. The u
mate aim of this work is to begin assessing new acti
tion imaging algorithms18 using in vivo data acquired
from pigs.
t-

-

d

We have discussed in some detail the solution of
governing equations, including a practical generalizat
of some previously published identities.34 We have de-
scribed the process used to construct the porcine m
from CT images. A careful convergence analysis of t
forward problem was conducted in order to provide
model with an appropriate resolution for the inver
problem.

A new analytic solution was derived for a spheric
geometry and this was used to illustrate the accuracy
convergence properties of the numerical procedure u
in the transfer matrix construction. The numerical so
tions converged to the analytic solutions in a linear fa
ion.

Finally, the inverse process was illustrated by reco
structing the activation sequence using simulated d
with a porcine model. With Gaussian noise of 100mV
and no geometric noise, the resulting activation seque
was successfully reconstructed.
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APPENDIX A: TRANSFER MATRICES FROM A
BOUNDARY VALUE PROBLEM PERSPECTIVE

Let VH be the domain of the heart,GH5]VH ~the
closed surface of the heart!, f i the intracellular potential,
fe the extracellular potential,fm5f i2fe the trans-
membrane potential, andsi and se the intracellular and
extracellular conductivity tensors, respectively.

From bidomain theory, insideVH we have

¹•~@si1se#¹fe!52¹•~si¹fm!. ~24!

This is a Poisson equation forfe in which the source
term is the right-hand side of Eq.~24!.

One can solve this partial differential equation using
weighted residuals approach. Letw be a~yet unspecified!
weighting function. From weighted residuals we th
have

E
VH

¹•~@si1se#¹fe!wdV1E
VH

¹•~si¹fm!wdV50.

~25!

Using Green’s theorem, we get

E
GH

w@si1se#¹fe•ndG2E
VH

@si1se#¹fe¹w•ndV

1E
VH

¹•~si¹fm!wdV50, ~26!

wheren is the unit outward normal.
Applying Green’s theorem again to the second in

gral, we get

E
GH

w@si1se#¹fe•ndG2E
GH

fe@si1se#¹w•ndG

1E
VH

¹•~@si1se#¹w!fedV

1E
VH

¹•~si¹fm!wdV50. ~27!

This is the standard boundary integral equation
Poisson’s equation with a general source term.
the special case of the source being given
2¹•(si¹fm) this term can be transformed in a simil
manner to the above, i.e.,
E
VH

¹•~si¹fm!wdV

5E
GH

wsi¹fm•ndG2E
VH

si¹fm•¹wdV

5E
GH

wsi¹fm•ndG2E
GH

fmsi¹w•ndG

1E
VH

¹•~si¹w!fmdV. ~28!

Inserting Eq.~28! into Eq. ~27!, we get

E
GH

w@si1se#¹fe•ndG2E
GH

fe@si1se#¹w•ndG

1E
VH

¹•~@si1se#¹w!fedV

1E
GH

wsi¹fm•ndG2E
GH

fmsi¹w•ndG

1E
VH

¹•~si¹w!fmdV50, ~29!

which is a generalization of Eq.~31! from Yamashita.34

Equation~29! is general—no assumptions~apart from
differentiability and integrability! have been made onw,
si , or se . In the paper by Yamashita,34 it was assumed
that w was a Green’s function satisfying

¹•~@si1se#¹w!1d~x0!50 ~30!

and

se¹w•n50 on GB , ~31!

whered(x0) is the Dirac delta distribution centered at
point x0 within the torso andGB is the surface of the
torso. This resulted in the removal of the first volum
integral in Eq.~29!.

In practice, such a Green’s function for the heart ca
not be found analytically, since bothsi and se are in
general anisotropic and inhomogeneous. If one assu
that they are homogeneous then both conductivity t
sors can be represented by constant 333 matrices,
which are diagonal in the coordinate system defined
the myocardial fibers and sheets. The fiber and sh
orientations in the heart are very complex and this
isotropy means that it is not possible to solve Eq.~30!
analytically, even under the assumption of equal anis
ropy ratios. This holds irrespective of whether we stri
for a proper Green’s function@i.e., impose Eq.~31!# or
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831Noninvasive Electrical Imaging of the Heart
merely look for a free-space Green’s function~also
known as a fundamental solution!, which is a solution of
Eq. ~30! with appropriate boundary conditions at infini
~i.e., the no-flux condition onGB is ignored!.

If one assumes further that the heart domain is i
tropic in both the extra and intracellular domains, th
one can apply a standard boundary element procedu
Eq. ~29!. For this, we takew to be the free-space Green
function, i.e., a solution of

¹•~¹w!1d~x0!50, ~32!

wherex0 is now an arbitrary point in space andw van-
ishes at infinity. In three dimensions, the solution of th
equation is

w~x,x0!5
1

4pR
, ~33!

whereR5ir i25ix2x0i2 is the distance measured fro
x0 .

With w defined as above,x0 insideVH , and assuming
material isotropy ~i.e., si5s i I , se5seI , and s i

5kse , wherek is a constant!, Eq. ~32! can be used to
simplify the domain integrals in Eq.~29!, thus

E
VH

¹•$@si1se#¹w~x,x0!%fe~x!dV~x!

5~11k!seE
VH

¹•@¹w~x,x0!#fe~x!dV~x!

52~11k!sefe~x0!, ~34!

E
VH

¹•@si¹w~x,x0!#fm~x!dV~x!

5kseE
VH

¹•@¹w~x,x0!#fm~x!dV~x!

52ksefm~x0! . ~35!

Thus Eq.~29! becomes

~11k!seE
GH

w~x,x0!¹fe~x!•n~x!dG~x!

2~11k!seE
GH

fe~x!¹w~x,x0!•n~x!dG~x!

2~11k!sefe~x0!1kseE
GH

w~x,x0!¹fm~x!
o

•n~x!dG~x!2kseE
GH

fm~x!¹w~x,x0!

•n~x!dG~x!2ksefm~x0!50. ~36!

The equation of more interest is the case whenx0

PGH ~i.e., x0 on the boundary of the domain!. To derive
this equation, considerx0 at a smooth point on the
boundary ofVH and construct a hemispherical region
radius« centered atx0 . Let VH8 be the extended region
~i.e., VH plus the hemispherical region!. Then x0 is in-
terior to VH8 so Eq. ~36! is valid with GH replaced by
]VH8 . One now considers this equation as lim«↓0 . If G«

is the boundary of the hemispherical region, andG2« the
boundary of that part ofVH that is outside the hemi
sphere~so ]VH8 5G«øG2«!, then we find that as long a
the surface atx0 has a unique tangent plane,

lim
«↓0

E
G«

fe~x!¹w~x,x0!•n~x!dG~x!

5 lim
«↓0

21

4pR2 2pR2fe~g!52
fe~x0!

2
, ~37!

whereg is some point on the hemisphere of radius« ~the
mean value theorem has been applied!.

Similarly,

lim
«↓0

E
G«

fm~x!¹w~x,x0!•n~x!dG~x!

5 lim
«↓0

21

4pR2 2pR2fm~g!52
fm~x0!

2
. ~38!

It can also be shown that

lim
«↓0

E
G«

w~x,x0!¹fe~x!•n~x!dG~x!50 ~39!

and

lim
«↓0

E
G«

w~x,x0!¹fm~x!•n~x!dG~x!50. ~40!

As lim«↓0G2«→GH and, while the integrands are sin



y
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gular ~when x0 is on GH!, the integrals exist in the
standard sense, so one can write

lim
«↓0

E
G2«

~each integrand! dG

5E
GH

~same integrand! dG. ~41!

Substituting Eqs.~37!–~41! into Eq. ~36! and dividing
through by (11k)se , we obtain the general boundar
integral equation
-

re
l in

s.
nt/

nd-

of
ri-
c~x0!fe~x0!1E
GH

fe~x!¹w~x,x0!•n~x!dG~x!

1
k

11k
c~x0!fm~x0!1

k

11k

3E
GH

fm~x!¹w~x,x0!•n~x!dG~x!

5E
GH

w~x,x0!

s i1se
qe~x!dG~x!1

k

11k

3E
GH

w~x,x0!¹fm~x!•n~x!dG~x!, ~42!

where
c~x0!55
1 if x0PVH

1
2 if x0PGH and GH smooth atx0

internal solid angle

4p
if x0PGH and GH not smooth atx0

0 if x0 outside VH

~43!
art,

ty
andqe(x)5¹fe(x)•n(x) is the normal extracellular cur
rent at the pointx.

Equation~42! relatesfe andfm at the pointx0 to the
values offe , fm , qe , and¹fm•n everywhere onGH .
On GH ,¹fm•n is 0 since transmembrane potentials a
confined to the heart, which removes the last integra
Eq. ~42!.

Outside the heart, the torso potential,f, is governed
by

¹•~s¹f!50, ~44!

wheres is the conductivity of the passive torso tissue
This can be solved using a coupled finite-eleme
boundary-element procedure.28 Continuity of ~extracellu-
lar! potential and current across the myocardial bou
aries provides the link between Eqs.~44! and ~42!.
In the usual way, one can discretize the boundaries
all regions involved, and assemble the following mat
ces:
S all coefficients
of potentials from

Eq. ~42!

and Eq. ~44!

D S fm

fe
H

f1

•

•

fN

D
5S all coefficients

of currents from
Eq. ~42!

and Eq. ~44!

D S qe
H

q1

•

•

qN

D , ~45!

where
N is the number of tissue regions outside the he
fi is a vector of nodal values off in region i,
fm is a vector of nodal values offm on the heart,
fe

H is a vector of nodal values offe on the heart,
qi is a vector of nodal values ofq on the surface

of region i, and
qe

H is a vector of nodal values ofqe on the heart
surface.

The coefficient matrices include all the continui
constraints. Also, since]fm /]n is 0 onGH , this term is
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not present in Eq.~45!. It is worth noting that the coef-
ficients of fm in Eq. ~42! are just k/k11 times the
coefficients offe in that equation. Use of this fact a
lows one to speed up the assembly of Eq.~45!.

APPENDIX B: ANALYTIC SOLUTION

From Fig. 1, we denotefe
in to be the potential inside

the inner sphere andfe
out the potential between the inne

and outer spheres. From Eq.~24! we have for 0,r
<R1,

¹2S fe
in1

s i

s i1se
fmD50. ~46!

Now, in polar spheroidal coordinates, we chosefm to
be the potential field generated by a centric dipole
magnituder5(rx ,ry ,rz) in rectangular Cartesian coo
dinates, inside a sphere of radiusR1 with a no-flux
boundary condition atR1 , i.e.,

fm~r ,u,z!5
~R1

312r 3!

R1
3r 2 ~rx cosu sinz1ry sinu sinz

1rz cosz!. ~47!

Here,u is the circumferential angle,z is the azithimuthal
angle, andPn

m(cosz) is the associated Legendre polyn
mials of degreen and orderm. With fm chosen, Eq.~13!
is satisfied andfm is itself a solution to Laplace’s equa
tion inside the first sphere.

Thus, from Eq.~46! if fm is a solution to Laplace’s
equation, then we need to findfe

in such that fe
in

2(s i /s i1se)fm satisfies Laplace’s equation inside th
first sphere. The general solution to Laplace’s equation
polar spheroidal coordinates is

fe
in~r ,u,z!5 (

n50

`

(
m50

n

@Amn cos~mu!1Bmn sin~mu!#

3S Cmnr
n1

Dmn

r n11D Pn
m~cosz!. ~48!

From the orthogonality of spherical harmonic fun
tions, we note that as our choice offm only contains the
~0, 0!, ~0, 1! and ~1,1! (m,n) coefficients, then the gen
eral expression forfe
in must also only contain thos

coefficients, i.e.,

fe
in~r ,u,z!5~A11cosu1B11sinu!S C11r 1

D11

r 2 D sinz

1A01S C01r 1
D01

r 2 D cosz1A00S C001
D00

r D
2

s i

s i1se
fm~r ,u,z!. ~49!

Grouping the coefficients

C05A00C00, C15A01C01,

D05A00D00, D15A01D01,

we obtain, for the inner sphere,

fe
in~r ,u,z!5~A11cosu1B11sinu!S C11r 1

D11

r 2 D sinz

1S C1r 1
D1

r 2 D cosz1S C01
D0

r D
2

s i

s i1se
fm~r ,u,z!. ~50!

In the outer sphere Lapalace’s equation must be
isfied for fe

out. From orthogonality of spherical harmoni
functions, the general solution for the outside sphere
hence

fe
out~r ,u,z!5~E11cosu1F11sinu!S G11r 1

H11

r 2 D sinz

1S G1r 1
H1

r 2 D cosz1S G01
H0

r D . ~51!

The resulting expressions forfe in the inner and
outer spheres are hence
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fe~r ,u,z!

5H ~A11cosu1B11sinu!S C11r 1
D11

r 2 D sinz1S C1r 1
D1

r 2 D cosz1C01
D0

r
2

s i

s i1se
fm~r ,u,z! 0,r<R1 ,

~E11cosu1F11sinu!S G11r 1
H11

r 2 D sinz1S G1r 1
H1

r 2 D cosz1G01
H0

r
R1,r<R2.

~52!
im-

im-

ter

r

t

ht
the

ted
e
on

to
th
Substituting Eq.~52! into Eq. ~14!, we find that con-
tinuity of potential across the inner sphere boundary
plies

G01
H0

R1
5C01

D0

R1
, ~53!

E11S G11R11
H11

R1
2 D 5A11S C11R11

D11

R1
2 D

2
3s i

R1
2~s i1se!

rx , ~54!

F11S G11R11
H11

R1
2 D 5B11S C11R11

D11

R1
2 D

2
3s i

R1
2~s i1se!

ry , ~55!

G1R11
H1

R1
2 5C1R11

D1

R1
22

3s i

R1
2~s i1se!

rz . ~56!

Substituting Eq.~52! into Eq. ~15!, we find that con-
tinuity of current across the inner sphere boundary
plies

sH0

R1
2 5

~s i1se!D0

R1
2 , ~57!

sE11S G112
2H11

R1
3 D 5~s i1se!A11S C112

2D11

R1
3 D ,

~58!

sF11S G112
2H11

R1
3 D 5~s i1se!B11S C112

2D11

R1
3 D ,

~59!

sS G12
2H1

R1
3 D 5~s i1se!S C12

2D1

R1
3 D . ~60!
Substituting Eq.~52! into Eq. ~16!, we find that no
flux across the outer sphere implies

G112
2H11

R2
3 50, ~61!

G12
2H1

R2
3 50, ~62!

2
H0

R2
2 50. ~63!

Substituting Eq.~52! into Eq. ~17!, we find that speci-
fication of a reference potential at the top of the ou
sphere implies

G1R11
H1

R2
2 1G01

H0

R2
5f ref . ~64!

Equations~53!–~64! form two independent sets of linea
equations. The first set contains Eqs.~54!, ~55!, ~58!,
~59!, and ~61!, which involve the eight unknownsA11,
B11, C11, D11, E11, F11, G11, andH11. The second se
contains Eqs.~53!, ~56!, ~57!, ~60!, and~62!–~64!, which
involves the eight unknownsC0 , C1 , D0 , D1 , G0 , G1 ,
H0 , and H1 .

To solve the first set of equations, three of the eig
unknown coefficients must be fixed. When selecting
coefficients to fix, it should be noted that bothG11 and
H11 cannot be fixed together, since they are rela
through Eq. ~61!. Because it is desirable to have th
resultant circumferential variation directly dependent
the underlying dipole orientation that is generatingfm ,
the C11, D11, andH11 coefficients were chosen so as
normalize the equations in the radial direction. Wi
these three coefficients fixed, we obtain from Eq.~61!,

G115
2H11

R2
3 . ~65!



un-
he

ffi-

q.

g,

n

ial
by

e
he

y
ith
ce

835Noninvasive Electrical Imaging of the Heart
From Eqs.~58! and ~59!, we find

E115
~s i1se!R2

3~R1
3C1122D11!

2s~R1
32R2

3!H11
A115aA11, ~66!

F115
~s i1se!R2

3~R1
3C1122D11!

2s~R1
32R2

3!H11
B115aB11, ~67!

and thus from Eqs.~54! and ~55! we obtain

A115
23s iR2

3

~s i1se!@a~2R1
31R2

3!H112R2
3~C11R1

31D11!#
rx

5brx , ~68!

B115
23s iR2

3

~s i1se!@a~2R1
31R2

3!H112R2
3~C11R1

31D11!#
ry

5bry . ~69!

To solve the second set of equations, one of the
known eight coefficients must be fixed. In choosing t
coefficient it should be noted thatH0 @and thusD0 from
Eq. ~57!# cannot be fixed since it is implicitly zero from
Eq. ~63!. It should also be noted that ifC0 or G0 is fixed
the resulting expression forfe in the outer sphere will
not depend on the dipole source generatingfm . For this
reason, and to be consistent with the choice of coe
cients from the first set of equations,C1 is the coefficient
chosen to be fixed. Thus, from Eq.~63!, we find that
H050 and thereforeD050 from Eq. ~57!. This gives
C05G0 from Eq. ~53!.

From Eq.~62! we have

G15
2H1

R2
3 , ~70!

and thus from Eqs.~56! and ~60!, we obtain

D15
3~2R1

31R2
3!~~s i1se!R1

2C122s irz!

2@~2s i12se1s!R1
31~s i1se2s!R2

3#
2R1

3C1

1
3s irz

s i1se
~71!

and

H15
3R2

3@~s i1se!R1
3C122s irz#

2@~2s i12se1s!R1
31~s i1se2s!R2

3#
. ~72!
The final coefficient can then be obtained from E
~64!, i.e.,

G05f ref2
9R2@~s i1se!R1

3C122s irz#

2@~2s i12se1s!R1
31~s i1se2s!R2

3#
.

~73!

To obtain a particular solution for numerical testin
we choseR151 and R253, r5(1,2,1), s i52, se54,
s52, C1151, D1151, H1151, C151, andf ref50. The
full set of 16 coefficients for this particular case is give
by

A115
52

17
, E115

81

17
,

B115
104

17
, F115

162

17
,

C1151, G115
2

27
,

D1151 H1151,

C151, G15
3

61
,

D15
87

122
, H15

81

122
,

C05
227

122
, G05

227

122
,

D050, H050 .

The final expressions for the extracellular potent
and normal current for this particular case are given
Eqs. ~18! and ~19!.

It should be noted that bothfm andfe
in contain a 1/r 2

singularity atr 50. The effect of this singularity must b
taken into account when performing an integration of t
type in Eq.~25!. Because of the form offe

in , the singu-
larity from fm cancels out. The resulting singularit
from fe

in acts like a dipole source when integrated w
the weighting function. The correction factor that hen
needs to be added to the left-hand side of Eq.~42! is

4pr* •¹w~r0* ,x0!5
r* •r

R3 , ~74!
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where r* 5(A11D11,B11D11,D1) is the pseudodipole
singularity source,r0* [0 is the location of the singular
ity, and w(r0* ,x0) is the free-space Green’s functio
defined by Eq.~33!.
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