Introduction

Neuronal production of nitric oxide (NO) can influence cardiovascular homeostasis through its action as a neuromodulator within the autonomic nervous system. Sympathetic over-activity is a feature of early hypertension. Adenoviral gene transfer of neuronal NO synthase (nNOS) can decrease central sympathetic outflow1, but non-specific adenoviral vectors can cause promiscuous transduction. This problem can be circumvented by targeting the NO pathway in vivo in selected cellular populations using cell specific viral vectors2.

We tested the hypothesis that
1. A significant component of cardiac sympathetic hyper-responsiveness in hypertension occurs at the end organ level due to impaired NO-cyclic nucleotide signaling.
2. Gene transfer with a noradrenergic cell specific promoter coupled to nNOS increases the bioactivity of nNOS and the production of cGMP that results in restoring sympathetic transmission levels in spontaneously hypertensive rats (SHR) to similar responses seen in normotensive Wistar-Kyoto (WKY) rats.

Methods

Gene transfer to the right atrium of the rat
Percutaneous gene transfer to the right atrium was performed in male WKY & SHR (16-20 weeks), under isoflurane anaesthesia. Adenovirus encoding either nNOS or eGFP driven by PRS promoter was used. Animals received a right atrial injection of 5x10^10 virus particles in phosphate-buffered saline.

Measurement of [%]noradrenaline ([H]NHE) release
Neurotransmitter NE release was measured using labelled [H]NHE isolated right atrium in response to 5Hz field stimulation. [%]outflow was expressed as a percentage of the total radioactivity released at the different time point.

Cardiac sympathetic neuron isolation and transduction
Middle cervical stellate sympathetic ganglia were isolated and transduced by adenoviral vector encoding eGFP or nNOS driven by PRS promoter. Sympathetic neurons were identified by anti-tyrosine hydroxylase (TH) staining.

Measurement of tissue cGMP levels and nNOS activity
Atrial cGMP amount was measured by radioimmunoassay kit (Amersham UK). NOS activity in atria was quantified by measuring the conversion of [%]-L-arginine to [%]-L-citrulline in the presence of saturating concentrations of the cofactors of the enzyme with calcium and nNOS inhibitor, L-N(G)-nitro-L-arginine, Dihydorochloride.

Results

Conclusion

Noradrenergic cell specific nNOS gene transfer into the SHR right atrial wall upregulates bioavailability of NO in cardiac sympathetic nerves and restores impaired NO-cGMP signaling associated with hypertension, and normalises cardiac sympathetic function. This targeted technique may provide a novel method for reducing sympathetic hyperactivity in pathological states such as hypertension.

Summary

Gene transfer with nNOS into Sympathetic Nerves Reverses Abnormal Neurotransmission in Spontaneous Hypertensive Rats

Dan Li, Lijun Wang, Chee-Wan Lee, Tom A. Dawson, David J. Paterson

Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, U.K. OX1 3PT

This work is supported by the British Heart Foundation and The Wellcome Trust.

References