Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Increased response to visual feedback of drug-induced dyskinetic movements in advanced Parkinson's disease.

    19 March 2018

    To investigate the response to visual feedback of involuntary movements which have a frequency composition similar to cerebellar tremor but are not caused by cerebellar damage, we have tested six advanced Parkinson's disease (PD) patients with drug-induced dyskinetic movements using visually guided wrist tracking tasks. Tracking performance was assessed under three visual conditions: (1) both guiding target and movement cursor were displayed continuously; (2) the target display was turned off for the second half of each trial; or (3) the cursor display, but not the target, was turned off for the second half of each trial. The response to visual feedback of drug-induced dyskinetic movements at 1-5 Hz in these advanced PD patients were significantly increased than in normal controls. This suggests that increased response to visual feedback might be a common feature of low frequency involuntary movements and not directly caused by cerebellar damages.

  • Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus.

    9 February 2018

    The pedunculopontine nucleus is composed of cholinergic and non-cholinergic neurones and is located in the caudal pontomesencephalic tegmentum. Evidence suggests that the nucleus plays a role in the production and control of movement. The nucleus has dense interconnections with the basal ganglia, as well as with other areas of the brain associated with motor control. Electrical stimulation of the pedunculopontine nucleus in the decerebrate cat or rat produces organized locomotor movements. Physiological studies show that the pedunculopontine nucleus modulates its activity in response to locomotion, as well as voluntary arm and eye movements. Degeneration of the pedunculopontine nucleus is seen in post-mortem brains in humans with Parkinson's disease and Parkinsonian syndromes. In animal models of Parkinson's disease, metabolic changes are seen in the pedunculopontine nucleus, and chemical inhibition or mechanical disruption of the nucleus can produce an akinetic state in animals and man. In this paper we review the literature in support of the suggestion that some of the symptoms of Parkinson's disease are caused by dysfunction of the pedunculopontine nucleus. In accordance with this view, direct stimulation of the nucleus can ameliorate some symptoms of the disease, as demonstrated in both experimental animals and man.

  • Camptocormia treated with bilateral pallidal stimulation: case report.

    14 March 2018

    The authors report the neurological, neurophysiological, and neuropsychological effects of using chronic bilateral pallidal high-frequency deep brain stimulation (DBS) in a case of disabling camptocormia. Deep brain stimulation electrodes were implanted stereotactically to target the globus pallidus internus (GPi) bilaterally. Local field potentials (FPs) were recorded using the DBS electrodes and concurrent abdominal flexor electromyography (EMG) potentials during camptocormic episodes. Videotaped assessments of the movement disorder and neuropsychological evaluation before implantation and at 6 months after initiation of pallidal stimulation were recorded. There was significant functional improvement following chronic pallidal stimulation, and some improvement was noted in neuropsychological scores. The GPi FPs showed temporal correlation with EMG-recorded rectus abdominis potentials. There were no treatment-related adverse effects. The authors have found that chronic pallidal stimulation was safe and offered functional benefit in this severely disabling condition. The physiological studies may help further the understanding of the pathophysiology of this rare entity.

  • The direction of oscillation in spiral drawings can be used to differentiate distal and proximal arm tremor.

    19 March 2018

    The assessment of the extent of involvement of the distal and proximal joints in a complex arm tremor is important clinically, as tremor generated around the distal and proximal arm joints can be differentially alleviated by surgical intervention to the thalamic and subthalamic targets, respectively. We observed that the tremor present in spiral drawings shows a diagonal directional preference. We hypothesized that the directional preference of tremor within spiral drawings could be related to the involvement of different arm joints. In this study, we tested this hypothesis by: (1) studying simulated tremulous drawings performed by healthy subjects with the joints selectively restrained; (2) recording surface EMGs from the forearm extensor and deltoid muscles during drawing; and (3) mathematical modelling the kinematics of the arm in 2D drawings. Our data showed that a "main diagonal" axis of orientation of the tremor along the orientation of the forearm indicates a predominantly proximal tremor driven by the shoulder, and a "cross diagonal" axis of orientation of tremor (i.e. perpendicular to the forearm) indicates that the tremor is predominantly distal and driven by the elbow or wrist. We conclude that the spiral drawing task can be used as an objective and quantitative method for differentiating the involvement of the proximal and distal arm joints in complex arm tremors.

  • Involvement of human basal ganglia in offline feedback control of voluntary movement.

    2 February 2018

    Practice makes perfect, but the neural substrates of trial-to-trial learning in motor tasks remain unclear. There is some evidence that the basal ganglia process feedback-related information to modify learning in essentially cognitive tasks , but the evidence that these key motor structures are involved in offline feedback-related improvement of performance in motor tasks is paradoxically limited. Lesion studies in adult zebra finches suggest that the avian basal ganglia are involved in the transmission or production of an error signal during song . However, patients with Huntington's disease, in which there is prominent basal ganglia dysfunction, are not impaired in error-dependent modulation of future trial performance . By directly recording from the subthalamic nucleus in patients with Parkinson's disease, we demonstrate that this nucleus processes error in trial performance at short latency. Local evoked activity is greatest in response to smallest errors and influences the programming of subsequent movements. Accordingly, motor parameters are least likely to change after the greatest evoked responses so that accurately performed trials tend to precede other accurate trials. This relationship is disrupted by electrical stimulation of the nucleus at high frequency. Thus, the human subthalamic nucleus is involved in feedback-based learning.

  • Modulation by dopamine of human basal ganglia involvement in feedback control of movement.

    7 December 2017

    We learn new motor tasks by trial and error, repeating what works best and avoiding past mistakes. To repeat what works best we must register a satisfactory outcome, and in a study [1] we showed the existence of an evoked activity in the basal ganglia that correlates with accuracy of task performance and is associated with reiteration of successful motor parameters in subsequent movements. Here we report evidence that the signaling of positive trial outcome relies on dopaminergic input to the basal ganglia, by recording from the subthalamic nucleus (STN) in patients with nigrostriatal denervation due to Parkinson's Disease (PD) who have undergone functional neurosurgery. Correlations between subthalamic evoked activities and trial accuracy were weak and behavioral performance remained poor while patients were untreated; however, both improved after the dopamine prodrug levodopa was re-introduced. The results suggest that the midbrain dopaminergic system may be important, not only in signaling explicit positive outcomes or rewards in tasks requiring choices between options [2,3], but also in trial-to-trial learning and in reinforcing the selection of optimal parameters in more automatic motor control.

  • Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey.

    19 March 2018

    We have studied the effects of stimulating the pedunculopontine nuclei through a fully implanted macroelectrode with a s.c. implantable pulse generator whose parameters can be programmed telemetrically, in a macaque before and after inducing Parkinsonian akinesia with MPTP. Our results show that in the normal monkey high frequency stimulation of the pedunculopontine nuclei reduces motor activity while low frequency stimulation increases it significantly over baseline. After making the monkey Parkinsonian with MPTP, unilateral low frequency stimulation of the pedunculopontine nuclei led to significant increases in activity. These results suggest that pedunculopontine nuclei stimulation could be clinically effective in treating advanced Parkinson's disease and other akinetic disorders.