Search results
Found 12924 matches for
A new mouse model of type 2 diabetes, produced by N-ethyl-nitrosourea mutagenesis, is the result of a missense mutation in the glucokinase gene.
Here we report the first cloned N-ethyl-nitrosourea (ENU)-derived mouse model of diabetes. GENA348 was identified through free-fed plasma glucose measurement, being more than 2 SDs above the population mean of a cohort of >1,201 male ENU mutant mice. The underlying gene was mapped to the maturity-onset diabetes of the young (MODY2) homology region of mouse chromosome 11 (logarithm of odds 6.0). Positional candidate gene analyses revealed an A to T transversion mutation in exon 9 of the glucokinase gene, resulting in an isoleucine to phenylalanine change at amino acid 366 (I366F). Heterozygous mutants have 67% of the enzyme activity of wild-type littermates (P < 0.0012). Homozygous mutants have less enzyme activity (14% of wild-type activity) and are even less glucose tolerant. The GENA348 allele is novel because no mouse or human diabetes studies have described a mutation in the corresponding amino acid position. It is also the first glucokinase missense mutation reported in mice and is homozygous viable, unlike the global knockout mutations. This work demonstrates that ENU mutagenesis screens can be used to generate models of complex phenotypes, such as type 2 diabetes, that are directly relevant to human disease.
Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31.
The whirler mouse mutant (wi) does not respond to sound stimuli, and detailed ultrastructural analysis of sensory hair cells in the organ of Corti of the inner ear indicates that the whirler gene encodes a protein involved in the elongation and maintenance of stereocilia in both inner hair cells (IHCs) and outer hair cells (OHCs). BAC-mediated transgene correction of the mouse phenotype and mutation analysis identified the causative gene as encoding a novel PDZ protein called whirlin. The gene encoding whirlin also underlies the human autosomal recessive deafness locus DFNB31. In the mouse cochlea, whirlin is expressed in the sensory IHC and OHC stereocilia. Our findings suggest that this novel PDZ domain-containing molecule acts as an organizer of submembranous molecular complexes that control the coordinated actin polymerization and membrane growth of stereocilia.
Novel phenotypes identified by plasma biochemical screening in the mouse.
We used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for both gene function studies and use as new animal models of human disease (Nolan et al. 2000b). One focus of the program was the development of a blood biochemistry screen. At 8-12 weeks of age, approximately 300 ml of blood was collected from F1 offspring of ENU mutagenized male mice. This yielded approximately 125 ml of plasma, used to perform a profile of 17 standard biochemical tests on an Olympus analyzer. Cohorts of F1 mice were also aged and then retested to detect late onset phenotypes. In total, 1,961 F1s were screened. Outliers were identified by running means and standard deviations. Of 70 mice showing consistent abnormalities in plasma biochemistry, 29 were entered into inheritance testing. Of these, 9 phenotypes were confirmed as inherited, 10 found not to be inherited, and 10 are still being tested. Inherited mutant phenotypes include abnormal lipid profiles (low total and HDL cholesterol, high triglycerides); abnormalities in bone and liver metabolism (low ALP, high ALP, high ALT, and AST); abnormal plasma electrolyte levels (high sodium and chloride); as well as phenotypes of interest for the study of diabetes (high glucose). The gene loci bearing the mutations are currently being mapped and further characterized. Our results have validated our biochemical screen, which is applicable to other mutagenesis projects, and we have produced a new set of mutants with defined metabolic phenotypes.
The potential of utrophin and dystrophin combination therapies for Duchenne muscular dystrophy.
Duchenne muscular dystrophy (DMD) is a lethal neuromuscular disorder caused by loss of dystrophin. Several therapeutic modalities are currently in clinical trials but none will achieve maximum functional rescue and full disease correction. Therefore, we explored the potential of combining the benefits of dystrophin with increases of utrophin, an autosomal paralogue of dystrophin. Utrophin and dystrophin can be co-expressed and co-localized at the same muscle membrane. Wild-type (wt) levels of dystrophin are not significantly affected by a moderate increase of utrophin whereas higher levels of utrophin reduce wt dystrophin, suggesting a finite number of actin binding sites at the sarcolemma. Thus, utrophin upregulation strategies may be applied to the more mildly affected Becker patients with lower dystrophin levels. Whereas increased dystrophin in wt animals does not offer functional improvement, overexpression of utrophin in wt mice results in a significant supra-functional benefit over wt. These findings highlight an additive benefit of the combined therapy and potential new unique roles of utrophin. Finally, we show a 30% restoration of wt dystrophin levels, using exon-skipping, together with increased utrophin levels restores dystrophic muscle function to wt levels offering greater therapeutic benefit than either single approach alone. Thus, this combination therapy results in additive functional benefit and paves the way for potential future combinations of dystrophin- and utrophin-based strategies.
Synthesis of SMT022357 enantiomers and in vivo evaluation in a Duchenne muscular dystrophy mouse model.
Following on from ezutromid, the first-in-class benzoxazole utrophin modulator that progressed to Phase 2 clinical trials for the treatment of Duchenne muscular dystrophy, a new chemotype was designed to optimise its physicochemical and ADME profile. Herein we report the synthesis of SMT022357, a second generation utrophin modulator preclinical candidate, and an asymmetric synthesis of its constituent enantiomers. The pharmacological properties of both enantiomers were evaluated in vitro and in vivo. No significant difference in the activity or efficacy was observed between the two enantiomers; activity was found to be comparable to the racemic mixture.
Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid.
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease arising from mutations in the dystrophin gene. Upregulation of utrophin to compensate for the missing dystrophin offers a potential therapy independent of patient genotype. The first-in-class utrophin modulator ezutromid/SMT C1100 was developed from a phenotypic screen through to a Phase 2 clinical trial. Promising efficacy and evidence of target engagement was observed in DMD patients after 24 weeks of treatment, however trial endpoints were not met after 48 weeks. The objective of this study was to understand the mechanism of action of ezutromid which could explain the lack of sustained efficacy and help development of new generations of utrophin modulators. Using chemical proteomics and phenotypic profiling we show that the aryl hydrocarbon receptor (AhR) is a target of ezutromid. Several lines of evidence demonstrate that ezutromid binds AhR with an apparent KD of 50 nm and behaves as an AhR antagonist. Furthermore, other reported AhR antagonists also upregulate utrophin, showing that this pathway, which is currently being explored in other clinical applications including oncology and rheumatoid arthritis, could also be exploited in future DMD therapies.
Utrophin influences mitochondrial pathology and oxidative stress in dystrophic muscle.
BACKGROUND: Duchenne muscular dystrophy (DMD) is a lethal X-linked muscle wasting disorder caused by the absence of dystrophin, a large cytoskeletal muscle protein. Increasing the levels of the dystrophin-related-protein utrophin is a highly promising therapy for DMD and has been shown to improve pathology in dystrophin-deficient mice. One contributing factor to muscle wasting in DMD is mitochondrial pathology that contributes to oxidative stress and propagates muscle damage. The purpose of this study was to assess whether utrophin could attenuate mitochondria pathology and oxidative stress. METHODS: Skeletal muscles from wildtype C57BL/10, dystrophin-deficient mdx, dystrophin/utrophin double knockout (dko) and dystrophin-deficient mdx/utrophin over-expressing mdx-Fiona transgenic mice were assessed for markers of mitochondrial damage. RESULTS: Using transmission electron microscopy, we show that high levels of utrophin ameliorate the aberrant structure and localisation of mitochondria in mdx mice whereas absence of utrophin worsened these features in dko mice. Elevated utrophin also reverts markers of protein oxidation and oxidative stress, elevated in mdx and dko mice, to wildtype levels. These changes were observed independently of a shift in oxidative phenotype. CONCLUSION: These findings show that utrophin levels influence mitochondrial pathology and oxidative stress. While utrophin deficiency worsens the pathology, utrophin over-expression in dystrophic muscle benefits mitochondria and attenuates the downstream pathology associated with aberrant mitochondrial function.
Overexpression of Fto leads to increased food intake and results in obesity.
Genome-wide association studies have identified SNPs within FTO, the human fat mass and obesity-associated gene, that are strongly associated with obesity. Individuals homozygous for the at-risk rs9939609 A allele weigh, on average, ~3 kg more than individuals with the low-risk T allele. Mice that lack FTO function and/or Fto expression display increased energy expenditure and a lean phenotype. We show here that ubiquitous overexpression of Fto leads to a dose-dependent increase in body and fat mass, irrespective of whether mice are fed a standard or a high-fat diet. Our results suggest that increased body mass results primarily from increased food intake. Mice with increased Fto expression on a high-fat diet develop glucose intolerance. This study provides the first direct evidence that increased Fto expression causes obesity in mice.
A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene.
Human FTO gene variants are associated with body mass index and type 2 diabetes. Because the obesity-associated SNPs are intronic, it is unclear whether changes in FTO expression or splicing are the cause of obesity or if regulatory elements within intron 1 influence upstream or downstream genes. We tested the idea that FTO itself is involved in obesity. We show that a dominant point mutation in the mouse Fto gene results in reduced fat mass, increased energy expenditure, and unchanged physical activity. Exposure to a high-fat diet enhances lean mass and lowers fat mass relative to control mice. Biochemical studies suggest the mutation occurs in a structurally novel domain and modifies FTO function, possibly by altering its dimerisation state. Gene expression profiling revealed increased expression of some fat and carbohydrate metabolism genes and an improved inflammatory profile in white adipose tissue of mutant mice. These data provide direct functional evidence that FTO is a causal gene underlying obesity. Compared to the reported mouse FTO knockout, our model more accurately reflects the effect of human FTO variants; we observe a heterozygous as well as homozygous phenotype, a smaller difference in weight and adiposity, and our mice do not show perinatal lethality or an age-related reduction in size and length. Our model suggests that a search for human coding mutations in FTO may be informative and that inhibition of FTO activity is a possible target for the treatment of morbid obesity.
A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice.
AIMS/HYPOTHESIS: C57BL/6J mice exhibit impaired glucose tolerance. The aims of this study were to map the genetic loci underlying this phenotype, to further characterise the physiological defects and to identify candidate genes. METHODS: Glucose tolerance was measured in an intraperitoneal glucose tolerance test and genetic determinants mapped in an F2 intercross. Insulin sensitivity was measured by injecting insulin and following glucose disposal from the plasma. To measure beta cell function, insulin secretion and electrophysiological studies were carried out on isolated islets. Candidate genes were investigated by sequencing and quantitative RNA analysis. RESULTS: C57BL/6J mice showed normal insulin sensitivity and impaired insulin secretion. In beta cells, glucose did not stimulate a rise in intracellular calcium and its ability to close KATP channels was impaired. We identified three genetic loci responsible for the impaired glucose tolerance. Nicotinamide nucleotide transhydrogenase (Nnt) lies within one locus and is a nuclear-encoded mitochondrial proton pump. Expression of Nnt is more than sevenfold and fivefold lower respectively in C57BL/6J liver and islets. There is a missense mutation in exon 1 and a multi-exon deletion in the C57BL/6J gene. Glucokinase lies within the Gluchos2 locus and shows reduced enzyme activity in liver. CONCLUSIONS/INTERPRETATION: The C57BL/6J mouse strain exhibits plasma glucose intolerance reminiscent of human type 2 diabetes. Our data suggest a defect in beta cell glucose metabolism that results in reduced electrical activity and insulin secretion. We have identified three loci that are responsible for the inherited impaired plasma glucose tolerance and identified a novel candidate gene for contribution to glucose intolerance through reduced beta cell activity.
Micro-utrophin Improves Cardiac and Skeletal Muscle Function of Severely Affected D2/mdx Mice.
Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by mutations in the dystrophin gene. DMD boys are wheelchair-bound around 12 years and generally survive into their twenties. There is currently no effective treatment except palliative care, although personalized treatments such as exon skipping, stop codon read-through, and viral-based gene therapies are making progress. Patients present with skeletal muscle pathology, but most also show cardiomyopathy by the age of 10. A systemic therapeutic approach is needed that treats the heart and skeletal muscle defects in all patients. The dystrophin-related protein utrophin has been shown to compensate for the lack of dystrophin in the mildly affected BL10/mdx mouse. The purpose of this investigation was to demonstrate that AAV9-mediated micro-utrophin transgene delivery can not only functionally replace dystrophin in the heart, but also attenuate the skeletal muscle phenotype in severely affected D2/mdx mice. The data presented here show that utrophin can indeed alleviate the pathology in skeletal and cardiac muscle in D2/mdx mice. These results endorse the view that utrophin modulation has the potential to increase the quality life of all DMD patients whatever their mutation.
Embryonic myosin is a regeneration marker to monitor utrophin-based therapies for DMD.
Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of the cytoskeletal protein dystrophin. Constitutive utrophin expression, a structural and functional paralogue of dystrophin, can successfully prevent the dystrophic pathology in the dystrophin-deficient mdx mouse model. In dystrophic muscles, utrophin is increased as part of the repair process and localized at the sarcolemma of regenerating myofibers. The presence of developmental myosin such as embryonic myosin (MyHC-emb) and neonatal represents a useful marker of muscle regeneration and a meaningful indicator of muscle damage, which correlates with the clinical severity of milder Becker muscular dystrophy and DMD patients. In the present study, we demonstrate that MyHC-emb is a robust marker of regeneration at different ages and in different skeletal muscles. We also evaluate the correlation between utrophin, dystrophin and MyHC-emb in wild-type (wt) and regenerating dystrophic muscles. Restoration of dystrophin significantly reduced MyHC-emb levels. Similarly, overexpression of utrophin in the transgenic mdx-Fiona mice reduced the number of MyHC-emb positive fibers to wt level, prevented the regenerative process and rescued the muscle function. In contrast, the absence of utrophin in the dystrophin-deficient double-knockout mice resulted in a higher MyHC-emb content and in a more severe dystrophic pathophysiology than in mdx mice. These data illustrate the importance of monitoring utrophin and MyHC-emb levels in the preclinical evaluation of therapies and provide translational support for the use of developmental myosin as a disease biomarker in DMD clinical trials.
3,4-Ethylenedioxythiophene Hydrogels: Relating Structure and Charge Transport in Supramolecular Gels.
Ionic charge transport is a ubiquitous language of communication in biological systems. As such, bioengineering is in constant need of innovative, soft, and biocompatible materials that facilitate ionic conduction. Low molecular weight gelators (LMWGs) are complex self-assembled materials that have received increasing attention in recent years. Beyond their biocompatible, self-healing, and stimuli responsive facets, LMWGs can be viewed as a "solid" electrolyte solution. In this work, we investigate 3,4-ethylenedioxythiophene (EDOT) as a capping group for a small peptide library, which we use as a system to understand the relationship between modes of assembly and charge transport in supramolecular gels. Through a combination of techniques including small-angle neutron scattering (SANS), NMR-based Van't Hoff analysis, atomic force microscopy (AFM), rheology, four-point probe, and electrochemical impedance spectroscopy (EIS), we found that modifications to the peptide sequence result in distinct assembly pathways, thermodynamic parameters, mechanical properties, and ionic conductivities. Four-point probe conductivity measurements and electrochemical impedance spectroscopy suggest that ionic conductivity is approximately doubled by programmable gel assemblies with hollow cylinder morphologies relative to gels containing solid fibers or a control electrolyte. More broadly, it is hoped this work will serve as a platform for those working on charge transport of aqueous soft materials in general.
Considerations of growth factor and material use in bone tissue engineering using biodegradable scaffolds in vitro and in vivo.
Bone tissue engineering aims to harness materials to develop functional bone tissue to heal 'critical-sized' bone defects. This study examined a robust, coated poly(caprolactone) trimethacrylate (PCL-TMA) 3D-printable scaffold designed to augment bone formation. Following optimisation of the coatings, three bioactive coatings were examined, i) elastin-like polypeptide (ELP), ii) poly(ethyl acrylate) (PEA), fibronectin (FN) and bone morphogenetic protein-2 (BMP-2) applied sequentially (PEA/FN/BMP-2) and iii) both ELP and PEA/FN/BMP-2 coatings applied concurrently. The scaffold material was robust and showed biodegradability. The coatings demonstrated a significant (p
Models of cardiomyocyte-non-myocyte electrical interactions.
Cardiac non-myocytes are increasingly recognized as active contributors to cardiac electrophysiology. Fibroblasts have been shown to form connexin-based electrotonic connections with cardiomyocytes (CM) in situ, and more recently, macrophages have also been found to engage in electrotonic interactions with CM. This growing evidence requires a conceptual reassessment of cardiac electrophysiology. However, studying heterocellular coupling in situ remains challenging. These experimental uncertainties define a scope for computational modelling and simulation. In this review, we provide an overview of computational models of heterocellular coupling across multiple spatial scales, from single-cell interactions to whole-organ dynamics. We start by presenting the rationale for studying cardiac heterocellular coupling that is based on clinical and experimental evidence, followed by an overview of computational modelling studies, and conclude with an outlook to future research directions.

