Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2016 Taylor & Francis Group, LLC. We investigate a novel approach for controlling the alignment of a fast-switching chiral nematic liquid crystal state using a high resolution two-photon absorption laser scanning lithography technique with aberration correction that permits the engineering of photonic structures in-situ. Walls of polymer network are engineered parallel and perpendicular to the helical axis of a uniform lying helix in chiral nematic liquid crystals in order to stabilize the alignment in the absence of an electric field and enhance the flexo-electro-optic response.

Original publication

DOI

10.1080/00150193.2016.1142808

Type

Conference paper

Publication Date

02/05/2016

Volume

495

Pages

167 - 173