Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Logographic symbols are visually complex, and thus children's abilities for visual short-term memory (VSTM) predict their reading competence in logographic systems. In the present study, we investigated the importance of VSTM in logographic reading in adults, both behaviorally and by means of fMRI. Outside the scanner, VSTM predicted logographic Kanji reading in native Japanese adults (n=45), a finding consistent with previous observations in Japanese children. In the scanner, participants (n=15) were asked to perform a visual one-back task. For this fMRI experiment, we took advantage of the unique linguistic characteristic of the Japanese writing system, whereby syllabic Kana and logographic Kanji can share the same sound and meaning, but differ only in the complexity of their visual features. Kanji elicited greater activation than Kana in the cerebellum and two regions associated with VSTM, the lateral occipital complex and the superior intraparietal sulcus, bilaterally. The same regions elicited the highest activation during the control condition (an unfamiliar, unpronounceable script to the participants), presumably due to the increased VSTM demands for processing the control script. In addition, individual differences in VSTM performance (outside the scanner) significantly predicted blood oxygen level-dependent signal changes in the identified VSTM regions, during the Kanji and control conditions, but not during the Kana condition. VSTM appears to play an important role in reading logographic words, even in skilled adults, as evidenced at the behavioral and neural level, most likely due to the increased VSTM/visual attention demands necessary for processing complex visual features inherent in logographic symbols.

Original publication

DOI

10.1111/j.1460-9568.2010.07534.x

Type

Journal article

Journal

Eur J Neurosci

Publication Date

02/2011

Volume

33

Pages

539 - 548

Keywords

Adult, Brain, Brain Mapping, Female, Humans, Image Processing, Computer-Assisted, Language, Magnetic Resonance Imaging, Male, Memory, Short-Term, Pattern Recognition, Visual, Reading