Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: We investigated cardiac energetics in subjects with mutations in three different familial hypertrophic cardiomyopathy (HCM) disease genes, some of whom were nonpenetrant carriers without hypertrophy, using phosphorus-31 magnetic resonance spectroscopy. BACKGROUND: Familial hypertrophic cardiomyopathy is caused by mutations in sarcomeric protein genes. The mechanism by which these mutant proteins cause disease is uncertain. A defect of myocyte contractility had been proposed, but in vitro studies of force generation have subsequently shown opposing results in different classes of mutation. An alternative hypothesis of "energy compromise" resulting from inefficient utilization of adenosine triphosphate (ATP) has been suggested, but in vivo data in humans with genotyped HCM are lacking. METHODS: The cardiac phosphocreatine (PCr) to ATP ratio was determined at rest in 31 patients harboring mutations in the genes for either beta-myosin heavy chain, cardiac troponin T, or myosin-binding protein C, and in 24 controls. Transthoracic echocardiography was used to measure left ventricular (LV) dimensions and maximal wall thickness. RESULTS: The PCr/ATP was reduced in the HCM subjects by 30% relative to controls (1.70 +/- 0.43 vs. 2.44 +/- 0.30; p < 0.001), and the reduction was of a similar magnitude in all three disease-gene groups. The PCr/ATP was equally reduced in subjects with (n = 24) and without (n = 7) LV hypertrophy. CONCLUSIONS: Our data provide evidence of a bioenergetic deficit in genotype-confirmed HCM, which is present to a similar degree in three disease-gene groups. The presence of energetic abnormalities, even in those without hypertrophy, supports a proposed link between altered cardiac energetics and development of the disease phenotype.

Original publication

DOI

10.1016/s0735-1097(02)03009-7

Type

Journal article

Journal

J Am Coll Cardiol

Publication Date

21/05/2003

Volume

41

Pages

1776 - 1782

Keywords

Adenosine Triphosphate, Adolescent, Adult, Aged, Cardiac Myosins, Cardiomyopathy, Hypertrophic, Carrier Proteins, Child, Echocardiography, Transesophageal, Energy Metabolism, Female, Humans, Magnetic Resonance Spectroscopy, Male, Middle Aged, Mutation, Mutation, Missense, Myocardium, Phosphocreatine, Troponin T, Ventricular Myosins