Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neuronal survival in the vertebrate peripheral nervous system depends on neurotrophic factors available from target tissues. In an attempt to identify novel survival factors, we have studied the effect of secreted factors from retinal cells on the survival of chick sympathetic ganglion neurons. Embryonic day 10 sympathetic neurons undergo programmed cell death after 48 h without appropriate levels of nerve growth factor (NGF). Retina Conditioned Media (RCM) from explants of embryonic day 11 retinas maintained for 4 days in vitro supported 90% of E10 chick sympathetic neurons after 48 h. Conditioned medium from purified chick retinal Muller glial cells supported nearly 100% of E10 chick sympathetic neurons. Anti-NGF (1 microg/mL) blocked the survival effect of NGF, but did not block the trophic effect of RCM. Neither BDNF nor NT4 (0.1-50 ng/mL) supported E10 sympathetic neuron survival. Incubation of chimeric immunoglobulin-receptors TrkA, TrkB, or TrkC had no effect on RCM-induced sympathetic neuron survival. The survival effects were not blocked by anti-GDNF, anti-TGFbeta, and anti-CNTF and were not mimicked by FGFb (0.1-10 nM). LY294002 at 50 microM, but not PD098059 blocked sympathetic survival induced by RCM. Further, the combination of RCM and NGF did not result in an increase in neuronal survival compared with NGF alone (82% survival after 48 h). The secreted factor in RCM is retained in subfractions with a molecular weight above 100 kDa, binds to heparin, and is unaffected by dialysis, but is heat sensitive. Our results indicate the presence of a high-molecular weight retinal secreted factor that supports sympathetic neurons in culture.

Original publication

DOI

10.1002/neu.10008

Type

Journal article

Journal

J Neurobiol

Publication Date

01/2002

Volume

50

Pages

13 - 23

Keywords

Animals, Antibodies, Cell Survival, Cells, Cultured, Chick Embryo, Chickens, Culture Media, Conditioned, Mullerian Ducts, Nerve Growth Factor, Neuroglia, Neurons, Retina, Sympathetic Nervous System