Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Long-term memory in Drosophila is separable into two components: consolidated, anesthesia-resistant memory and long-lasting, protein-synthesis-dependent memory. The Drosophila memory mutant radish is specifically deficient in anesthesia-resistant memory and so represents the only molecular avenue to understanding this memory component. Here, we have identified the radish gene by positional cloning and comparative sequencing, finding a mutant stop codon in gene CG15720 from the Drosophila Genome Project. Induction of a wild-type CG15720 transgene in adult flies acutely rescues the mutant's memory defect. The phospholipase A2 gene, previously identified as radish [Chiang et al. (2004) Curr. Biol. 14:263-272], maps 95 kb outside the behaviorally determined deletion interval and is unlikely to be radish. The Radish protein is highly expressed in the mushroom bodies, centers of olfactory memory. It encodes a protein with 23 predicted cyclic-AMP-dependent protein kinase (PKA) phosphorylation sequences. The Radish protein has recently been reported to bind to Rac1 [Formstecher et al. (2005) Genome Res. 15:376-384], a small GTPase that regulates cytoskeletal rearrangement and influences neuronal and synaptic morphology.

Original publication

DOI

10.1073/pnas.0608377103

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

14/11/2006

Volume

103

Pages

17496 - 17500

Keywords

Anesthesia, Animals, Animals, Genetically Modified, Base Sequence, Drosophila Proteins, Drosophila melanogaster, Memory, Neuropil, Phospholipases A, Phospholipases A2, Phosphoproteins, Transcription, Genetic