Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Dopamine affects neural information processing, cognition, and behavior; however, the mechanisms through which these three levels of function are affected have remained unspecified. We present a parallel-distributed processing model of dopamine effects on neural ensembles that accounts for effects on human performance in a selective attention task. METHODS: Task performance is stimulated using principles and mechanisms that capture salient aspects of information processing in neural ensembles. Dopamine effects are simulated as a change in gain of neural assemblies in the area of release. RESULTS: The model leads to different predictions as a function of the hypothesized location of dopamine effects. Motor system effects are simulated as a change in gain over the response layer of the model. This induces speeding of reaction times but an impairment of accuracy. Cognitive attentional effects are simulated as a change in gain over the attention layer. This induces a speeding of reaction times and an improvement of accuracy, especially at very fast reaction times and when processing of the stimulus requires selective attention. CONCLUSIONS: A computer simulation using widely accepted principles of processing in neural ensembles can account for reaction time distributions and time-accuracy curves in a selective attention task. The simulation can be used to generate predictions about the effects of dopamine agonists on performance. An empirical study evaluating these predictions is described in a companion paper.

Original publication

DOI

10.1016/s0006-3223(97)00448-4

Type

Journal article

Journal

Biol Psychiatry

Publication Date

15/05/1998

Volume

43

Pages

713 - 722

Keywords

Attention, Brain, Cognition, Discrimination Learning, Dopamine, Humans, Neural Networks, Computer, Pattern Recognition, Visual