Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Being able to pick out particular sounds, such as speech, against a background of other sounds represents one of the key tasks performed by the auditory system. Understanding how this happens is important because speech recognition in noise is particularly challenging for older listeners and for people with hearing impairments. Central to this ability is the capacity of neurons to adapt to the statistics of sounds reaching the ears, which helps to generate noise-tolerant representations of sounds in the brain. In more complex auditory scenes, such as a cocktail party - where the background noise comprises other voices, sound features associated with each source have to be grouped together and segregated from those belonging to other sources. This depends on precise temporal coding and modulation of cortical response properties when attending to a particular speaker in a multi-talker environment. Furthermore, the neural processing underlying auditory scene analysis is shaped by experience over multiple timescales.

Original publication

DOI

10.1016/j.cophys.2020.09.001

Type

Journal article

Journal

Curr Opin Physiol

Publication Date

12/2020

Volume

18

Pages

63 - 72