Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The anterior visceral endoderm (AVE) of the mouse embryo is a specialised extra-embryonic tissue that is essential for anterior patterning of the embryo. It is characterised by the expression of anterior markers such as Hex, Cerberus-like and Lhx1. At pre-gastrula stages, cells of the AVE are initially located at the distal tip of the embryo, but they then move unilaterally to the future anterior. This movement is essential for converting the existing proximodistal axis into an anteroposterior axis. To investigate this process, we developed a culture system capable of imaging embryos in real time with single cell resolution. Our results show that AVE cells continuously change shape and project filopodial processes in their direction of motion, suggesting that they are actively migrating. Their proximal movement stops abruptly at the junction of the epiblast and extra-embryonic ectoderm, whereupon they move laterally. Confocal microscope images show that AVE cells migrate as a single layer in direct contact with the epiblast, suggesting that this tissue might provide directional cues. Together, these results show that the anteroposterior axis is correctly positioned by the active movement of cells of the AVE in response to cues from their environment, and by a 'barrier' to their movement that provides an endpoint for this migration.

Original publication

DOI

10.1242/dev.01005

Type

Journal article

Journal

Development

Publication Date

03/2004

Volume

131

Pages

1157 - 1164

Keywords

Animals, Body Patterning, Cell Movement, Cytokines, Endoderm, Gene Expression Regulation, Developmental, Genes, Homeobox, Homeodomain Proteins, In Situ Hybridization, LIM-Homeodomain Proteins, Mice, Mice, Inbred C57BL, Mice, Inbred CBA, Mice, Transgenic, Proteins, Transcription Factors