Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS: During development, the heart tube grows by differentiation of Isl1(+)/Nkx2-5(+) progenitors to the arterial and venous pole and dorsal mesocardium. However, after the establishment of the heart tube, Tbx18(+) progenitors were proposed to form the Tbx18(+)/Nkx2-5(-) sinus venosus and proepicardium. To elucidate the relationship between these contributions, we investigated the origin of the Tbx18(+) sinus venosus progenitor population in the cardiogenic mesoderm and its spatial and temporal relation to the second heart field during murine heart development. METHODS AND RESULTS: Explant culture revealed that the Tbx18(+) cell population has the potential to form Nkx2-5(-) sinus venosus myocardium. Three-dimensional reconstruction of expression patterns showed that during heart tube elongation, the Tbx18(+) progenitors remained spatially and temporally separate from the Isl1(+) second heart field, only overlapping with the Isl1(+) domain at the right lateral side of the inflow tract, where the sinus node developed. Consistently, genetic lineage analysis revealed that the Tbx18(+) descendants formed the sinus venosus myocardium, but did not contribute to the pulmonary vein myocardium that developed in the Isl1(+) second heart field. By means of DiI labelling and expression analysis, the origin of the sinus venosus progenitor population was traced to the lateral rim of splanchnic mesoderm that down-regulated Nkx2-5 expression approximately 2 days before its differentiation into sinus venosus myocardium. CONCLUSION: Our data indicate that the cardiogenic mesoderm contains an additional progenitor subpopulation that contributes to the sinus venosus myocardium. After patterning of the cardiogenic mesoderm, this progenitor population remains spatially separated and genetically distinctive from the second heart field subpopulation.

Original publication

DOI

10.1093/cvr/cvq033

Type

Journal article

Journal

Cardiovasc Res

Publication Date

01/07/2010

Volume

87

Pages

92 - 101

Keywords

Animals, Cell Differentiation, Cell Lineage, Cell Movement, Gestational Age, Green Fluorescent Proteins, Heart, Homeobox Protein Nkx-2.5, Homeodomain Proteins, LIM-Homeodomain Proteins, Lac Operon, Mesoderm, Mice, Mice, Transgenic, Morphogenesis, Myocytes, Cardiac, Proteins, Pulmonary Veins, RNA, Untranslated, Recombinant Fusion Proteins, Sinoatrial Node, Stem Cells, T-Box Domain Proteins, Tissue Culture Techniques, Transcription Factors