Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A major obstacle in the development of new therapeutic agents is the low bioavailability of hydrophilic substances. Drugs that bind to intracellular targets must penetrate the lipid bilayer surrounding the cell in order to exert their effect. A relatively new research area that addresses this problem by introducing novel transport peptides that facilitate the cellular penetration of potential drugs has emerged. These peptides predominantly have a positive net charge and/or an amphipathic nature, but can otherwise have very different characteristics. This group of peptides, although sometimes called protein transduction domains (PTDs), is here referred to as cell-penetrating peptides (CPPs). For many years it was believed that these peptides were internalized into cells via a non-endocytotic, receptor-independent pathway. However, recent publications have suggested that an endocytotic pathway cannot be ruled out, and that earlier results might be based on artifacts associated with fixation of cells and membrane association of peptides. Although the mechanism of cellular uptake remains unclear, there is an increasing amount of reports on biological effects of CPPs and their cargos. Thus, CPPs are an attractive pharmaceutical and biochemical tool that needs more attention. This review will discuss some recent results in this research field with focus on the cell-penetrating peptide transportan.

Type

Journal article

Journal

Curr Pharm Des

Publication Date

2005

Volume

11

Pages

3597 - 3611

Keywords

Animals, Cell Membrane, Cell Membrane Permeability, Drug Delivery Systems, Genetic Therapy, Genetic Vectors, Humans, Oligonucleotides, Antisense, Peptides, RNA, Small Interfering