Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: The ionic basis underlying the negative chronotropic effect of acetylcholine (ACh) on sinoatrial (SA) node cells is unresolved and controversial. In the present study, mathematical modeling was used to address this issue. METHODS AND RESULTS: The known concentration-dependent effects of ACh on iK,ACh, iCa,L, and i(f) were introduced into models of rabbit central and peripheral SA node cells. In the central and peripheral models, 9 x 10(-8) and 14 x 10(-8) M ACh, respectively, caused a 50% decrease in pacemaking rate, whereas in rabbit SA node to approximately 7.4 x 10(-8) M ACh caused such a decrease. In the models, iK,ACh was primarily responsible for the decrease and actions of ACh on iCa,L or i(f) alone caused a negligible effect. Although the inhibition of i(f) did not directly contribute to the chronotropic effect, it was indirectly important, because it minimized the opposition by i(f ) to the decrease of rate caused by activation of iK,ACh. The central model was more sensitive to ACh than the peripheral model. CONCLUSION: The chronotropic effect of ACh is principally the result of activation of iK,ACh, and inhibition of iCa,L plays little or no role. Inhibition of i(f) and possible inhibition of ib,Na play an important facilitative role by reducing the ability of i(f) and ib,Na to curtail the chronotropic effect caused by activation of iK,ACh.

Type

Journal article

Journal

J Cardiovasc Electrophysiol

Publication Date

05/2002

Volume

13

Pages

465 - 474

Keywords

Acetylcholine, Animals, Calcium Channels, Dose-Response Relationship, Drug, Heart Rate, Models, Biological, Potassium Channels, Rabbits, Sinoatrial Node